A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A Neural Network Model Combining [-2]proPSA, freePSA, Total PSA, Cathepsin D, and Thrombospondin-1 Showed Increased Accuracy in the Identification of Clinically Significant Prostate Cancer. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The Prostate Health Index (PHI) and Proclarix (PCLX) have been proposed as blood-based tests for prostate cancer (PCa). In this study, we evaluated the feasibility of an artificial neural network (ANN)-based approach to develop a combinatorial model including PHI and PCLX biomarkers to recognize clinically significant PCa (csPCa) at initial diagnosis.

Methods: To this aim, we prospectively enrolled 344 men from two different centres. All patients underwent radical prostatectomy (RP). All men had a prostate-specific antigen (PSA) between 2 and 10 ng/mL. We used an artificial neural network to develop models that can identify csPCa efficiently. As inputs, the model uses [-2]proPSA, freePSA, total PSA, cathepsin D, thrombospondin, and age.

Results: The output of the model is an estimate of the presence of a low or high Gleason score PCa defined at RP. After training on a dataset of up to 220 samples and optimization of the variables, the model achieved values as high as 78% for sensitivity and 62% for specificity for all-cancer detection compared with those of PHI and PCLX alone. For csPCa detection, the model showed 66% (95% CI 66-68%) for sensitivity and 68% (95% CI 66-68%) for specificity. These values were significantly different compared with those of PHI ( < 0.0001 and 0.0001, respectively) and PCLX ( = 0.0003 and 0.0006, respectively) alone.

Conclusions: Our preliminary study suggests that combining PHI and PCLX biomarkers may help to estimate, with higher accuracy, the presence of csPCa at initial diagnosis, allowing a personalized treatment approach. Further studies training the model on larger datasets are strongly encouraged to support the efficiency of this approach.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10000171PMC
http://dx.doi.org/10.3390/cancers15051355DOI Listing

Publication Analysis

Top Keywords

neural network
12
phi pclx
12
[-2]propsa freepsa
8
freepsa total
8
total psa
8
psa cathepsin
8
prostate cancer
8
artificial neural
8
pclx biomarkers
8
cspca initial
8

Similar Publications