A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Characterizing emerging features in cell dynamics using topological data analysis methods. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Filament-motor interactions inside cells play essential roles in many developmental as well as other biological processes. For instance, actin-myosin interactions drive the emergence or closure of ring channel structures during wound healing or dorsal closure. These dynamic protein interactions and the resulting protein organization lead to rich time-series data generated by using fluorescence imaging experiments or by simulating realistic stochastic models. We propose methods based on topological data analysis to track topological features through time in cell biology data consisting of point clouds or binary images. The framework proposed here is based on computing the persistent homology of the data at each time point and on connecting topological features through time using established distance metrics between topological summaries. The methods retain aspects of monomer identity when analyzing significant features in filamentous structure data, and capture the overall closure dynamics when assessing the organization of multiple ring structures through time. Using applications of these techniques to experimental data, we show that the proposed methods can describe features of the emergent dynamics and quantitatively distinguish between control and perturbation experiments.

Download full-text PDF

Source
http://dx.doi.org/10.3934/mbe.2023143DOI Listing

Publication Analysis

Top Keywords

topological data
8
data analysis
8
topological features
8
features time
8
data
7
features
5
topological
5
characterizing emerging
4
emerging features
4
features cell
4

Similar Publications