A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Inflammation differentially controls transport of depolarizing Nav versus hyperpolarizing Kv channels to drive rat nociceptor activity. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Inflammation causes pain by shifting the balance of ionic currents in nociceptors toward depolarization, leading to hyperexcitability. The ensemble of ion channels within the plasma membrane is regulated by processes including biogenesis, transport, and degradation. Thus, alterations in ion channel trafficking may influence excitability. Sodium channel Na1.7 and potassium channel K7.2 promote and oppose excitability in nociceptors, respectively. We used live-cell imaging to investigate mechanisms by which inflammatory mediators (IM) modulate the abundance of these channels at axonal surfaces through transcription, vesicular loading, axonal transport, exocytosis, and endocytosis. Inflammatory mediators induced a Na1.7-dependent increase in activity in distal axons. Further, inflammation increased the abundance of Na1.7, but not of K7.2, at axonal surfaces by selectively increasing channel loading into anterograde transport vesicles and insertion at the membrane, without affecting retrograde transport. These results uncover a cell biological mechanism for inflammatory pain and suggest Na1.7 trafficking as a potential therapeutic target.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10089179PMC
http://dx.doi.org/10.1073/pnas.2215417120DOI Listing

Publication Analysis

Top Keywords

inflammatory mediators
8
axonal surfaces
8
transport
5
inflammation differentially
4
differentially controls
4
controls transport
4
transport depolarizing
4
depolarizing nav
4
nav versus
4
versus hyperpolarizing
4

Similar Publications