98%
921
2 minutes
20
The current standard front-line therapy for patients with diffuse large-B cell lymphoma (DLBCL)-rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP)-is found to be ineffective in up to one-third of them. Thus, their early identification is an important step towards testing alternative treatment options. In this retrospective study, we assessed the ability of F-FDG PET/CT imaging features (radiomic + PET conventional parameters) plus clinical data, alone or in combination with genomic parameters to predict complete response to first-line treatment. Imaging features were extracted from images prior treatment. Lesions were segmented as a whole to reflect tumor burden. Multivariate logistic regression predictive models for response to first-line treatment trained with clinical and imaging features, or with clinical, imaging, and genomic features were developed. For imaging feature selection, a manual selection approach or a linear discriminant analysis (LDA) for dimensionality reduction were applied. Confusion matrices and performance metrics were obtained to assess model performance. Thirty-three patients (median [range] age, 58 [49-69] years) were included, of whom 23 (69.69%) achieved long-term complete response. Overall, the inclusion of genomic features improved prediction ability. The best performance metrics were obtained with the combined model including genomic data and built applying the LDA method (AUC of 0.904, and 90% of balanced accuracy). The amplification of was found to significantly contribute to explain response to first-line treatment in both manual and LDA models. Among imaging features, radiomic features reflecting lesion distribution heterogeneity ( and ) were predictors of response in manual models. Interestingly, when the dimensionality reduction was applied, the whole set of imaging features-mostly composed of radiomic features-significantly contributed to explain response to front-line therapy. A nomogram predictive for response to first-line treatment was constructed. In summary, a combination of imaging features, clinical variables and genomic data was able to successfully predict complete response to first-line treatment in DLBCL patients, with the amplification of as the genetic marker retaining the highest predictive value. Additionally, a panel of imaging features may provide important information when predicting treatment response, with lesion dissemination-related radiomic features deserving especial attention.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9989608 | PMC |
Radiol Med
September 2025
Breast Imaging Division, Radiology Department, IEO European Institute of Oncology IRCCS, 20141, Milan, Italy.
Metastatic involvement (MB) of the breast from extramammary malignancies is rare, with an incidence of 0.09-1.3% of all breast malignancies.
View Article and Find Full Text PDFJ Neuromuscul Dis
September 2025
Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA.
Background: Electrical impedance myography (EIM) has been proposed as an efficient, non-invasive biomarker of muscle composition in facioscapulohumeral muscular dystrophy (FSHD).
Objective: We investigate whether EIM parameters are associated with muscle structure measured by magnetic resonance imaging (MRI), muscle histology, and transcriptomic analysis as well as strength at the individual leg muscle level.
Methods: We performed a multi-center cross-sectional study enrolling 33 patients with FSHD.
Neuroradiology
September 2025
Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China.
Purpose: To develop and validate an integrated model based on MR high-resolution vessel wall imaging (HR-VWI) radiomics and clinical features to preoperatively assess periprocedural complications (PC) risk in patients with intracranial atherosclerotic disease (ICAD) undergoing percutaneous transluminal angioplasty and stenting (PTAS).
Methods: This multicenter retrospective study enrolled 601 PTAS patients (PC+, n = 84; PC -, n = 517) from three centers. Patients were divided into training (n = 336), validation (n = 144), and test (n = 121) cohorts.
J Ultrasound Med
September 2025
Department of Ultrasound, Donghai Hospital Affiliated to Kangda College of Nanjing Medical University, Lianyungang, China.
Objective: The aim of this study is to evaluate the prognostic performance of a nomogram integrating clinical parameters with deep learning radiomics (DLRN) features derived from ultrasound and multi-sequence magnetic resonance imaging (MRI) for predicting survival, recurrence, and metastasis in patients diagnosed with triple-negative breast cancer (TNBC) undergoing neoadjuvant chemotherapy (NAC).
Methods: This retrospective, multicenter study included 103 patients with histopathologically confirmed TNBC across four institutions. The training group comprised 72 cases from the First People's Hospital of Lianyungang, while the validation group included 31 cases from three external centers.
Technol Cancer Res Treat
September 2025
Department of Nephrology, Dongyang People's Hospital, Dongyang, China.
ObjectiveTo evaluate the diagnostic performance of a combined model incorporating ultrasound video-based radiomics features and clinical variables for distinguishing between benign and malignant breast lesions.MethodsA total of 346 patients (173 benign and 173 malignant) were retrospectively enrolled. Breast ultrasound videos were acquired and processed using semi-automatic segmentation in 3D Slicer.
View Article and Find Full Text PDF