98%
921
2 minutes
20
Background: Signaling by cAMP is organized in multiple distinct subcellular nanodomains regulated by cAMP-hydrolyzing PDEs (phosphodiesterases). Cardiac β-adrenergic signaling has served as the prototypical system to elucidate cAMP compartmentalization. Although studies in cardiac myocytes have provided an understanding of the location and properties of a handful of cAMP subcellular compartments, an overall view of the cellular landscape of cAMP nanodomains is missing.
Methods: Here, we combined an integrated phosphoproteomics approach that takes advantage of the unique role that individual PDEs play in the control of local cAMP, with network analysis to identify previously unrecognized cAMP nanodomains associated with β-adrenergic stimulation. We then validated the composition and function of one of these nanodomains using biochemical, pharmacological, and genetic approaches and cardiac myocytes from both rodents and humans.
Results: We demonstrate the validity of the integrated phosphoproteomic strategy to pinpoint the location and provide critical cues to determine the function of previously unknown cAMP nanodomains. We characterize in detail one such compartment and demonstrate that the PDE3A2 isoform operates in a nuclear nanodomain that involves SMAD4 (SMAD family member 4) and HDAC-1 (histone deacetylase 1). Inhibition of PDE3 results in increased HDAC-1 phosphorylation, leading to inhibition of its deacetylase activity, derepression of gene transcription, and cardiac myocyte hypertrophic growth.
Conclusions: We developed a strategy for detailed mapping of subcellular PDE-specific cAMP nanodomains. Our findings reveal a mechanism that explains the negative long-term clinical outcome observed in patients with heart failure treated with PDE3 inhibitors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10045983 | PMC |
http://dx.doi.org/10.1161/CIRCRESAHA.122.321448 | DOI Listing |
EMBO J
July 2025
Epithelial Signaling and Transport Section, National Institute of Dental Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
Endoplasmic reticulum/plasma membrane (ER/PM) junctions are a major site of cellular signal transduction including in epithelia; however, whether their lipid membrane environment affects junctional ion transporters function remains unclear. Here, we show that epithelial secretion is governed by phosphatidylserine (PtdSer) levels in ER/PM nanodomains, specified by the antagonistic action of the lipid transfer proteins E-Syt3 and ORP5, which transduce cAMP signals to the chloride channel CFTR and activate the sodium-bicarbonate cotransporter NBCe1-B by IRBIT. Lipid transfer by E-Syt3, along with restricted plasma membrane localization by the E-Syt3 C2C domain, are essential for E-Syt3 function, as removal of PtdSer from junctions by E-Syt3 dissociated the cAMP signaling pathway complex, preventing CFTR activation, and prevented NBCe1-B activation by IRBIT.
View Article and Find Full Text PDFBiochem J
May 2025
Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom.
G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors, mediating essential physiological responses through diverse intracellular signaling pathways. When coupled to Gs or Gi proteins, GPCR modulates the synthesis of 3'-5'-cyclic adenosine monophosphate (cAMP), which governs a wide array of processes, ranging from cellular growth and survival to metabolic regulation. Studies have highlighted that cAMP is not uniformly distributed within cells but instead is compartmentalized into highly localized nanodomains.
View Article and Find Full Text PDFCells
March 2025
Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK.
Phosphodiesterase 4 (PDE4) is a key regulator of cyclic adenosine monophosphate (cAMP) signalling in cardiomyocytes, controlling contractility, calcium handling, and hypertrophic responses. PDE4 provides spatial and temporal precision to cAMP signalling, particularly under β-adrenergic stimulation, through its compartmentalised activity in subcellular nanodomains, including the sarcoplasmic reticulum, plasma membrane and nuclear envelope. This review highlights the cardiac PDE4 isoforms PDE4A, PDE4B and PDE4D, focusing on their distinct localisation and contributions to cardiac physiology and pathophysiology, particularly in heart failure and arrhythmias.
View Article and Find Full Text PDFPharmacol Rev
May 2025
Section of Vascular and Metabolic Disease, Department of Internal Medicine, Erasmus MC University Medical Center, Erasmus University Rotterdam, Rotterdam, The Netherlands. Electronic address:
Cyclic nucleotides are synthesized by adenylyl and/or guanylyl cyclase, and downstream of this synthesis, the cyclic nucleotide phosphodiesterase families (PDEs) specifically hydrolyze cyclic nucleotides. PDEs control cyclic adenosine-3',5'monophosphate (cAMP) and cyclic guanosine-3',5'-monophosphate (cGMP) intracellular levels by mediating their quick return to the basal steady state levels. This often takes place in subcellular nanodomains.
View Article and Find Full Text PDFHypertension
February 2025
Division of Cardiology, Department of Medicine (D.A.K.), Johns Hopkins University School of Medicine, Baltimore, MD.
cGMP plays a central role in cardiovascular regulation in health and disease. It is synthesized by NO or natriuretic peptide activated cyclases and hydrolyzed to 5'GMP by select members of the PDEs (phosphodiesterase) superfamily. The primary downstream effector is cGMP-dependent protein kinase, primarily cGK-1a (cyclic GMP-dependent protein kinase 1 alpha) also known as protein kinase G 1a in the heart and vasculature.
View Article and Find Full Text PDF