Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
In this study, arsenite [As(III)] and arsenate [As(V)] removal efficiency of peanut shell biochar (PSB) and modified peanut shell biochar (MPSB) was compared in aqueous solutions. The modification was carried out with KMnO and KOH. Sorption efficiency of MPSB was relatively higher than PSB at pH 6 for As(III) (86%) and for As(V) (91.26%) for initial concentration of 1 mg/L, adsorbent dose of 0.5 g/L and 240 min equilibrium time at 100 rpm. Freundlich isotherm and pseudo-second order kinetic model suggested possible multilayer chemisorption. Fourier transform infrared spectroscopy showed that -OH, C-C, CC and C-O-C groups contributed significantly in adsorption for both PSB and MPSB. Thermodynamic study showed that the adsorption process was spontaneous and endothermic. Regeneration studies revealed that PSB and MPSB can be successfully used for three cycles. This study established that peanut shell is a low-cost, environment friendly and efficient biochar for removal of arsenic from water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2023.128831 | DOI Listing |