98%
921
2 minutes
20
Bone fragility is a profound complication of type 1 diabetes mellitus (T1DM), increasing patient morbidity. Within the mineralized bone matrix, osteocytes build a mechanosensitive network that orchestrates bone remodeling; thus, osteocyte viability is crucial for maintaining bone homeostasis. In human cortical bone specimens from individuals with T1DM, we found signs of accelerated osteocyte apoptosis and local mineralization of osteocyte lacunae (micropetrosis) compared with samples from age-matched controls. Such morphological changes were seen in the relatively young osteonal bone matrix on the periosteal side, and micropetrosis coincided with microdamage accumulation, implying that T1DM drives local skeletal aging and thereby impairs the biomechanical competence of the bone tissue. The consequent dysfunction of the osteocyte network hampers bone remodeling and decreases bone repair mechanisms, potentially contributing to the enhanced fracture risk seen in individuals with T1DM. STATEMENT OF SIGNIFICANCE: Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease that causes hyperglycemia. Increased bone fragility is one of the complications associated with T1DM. Our latest study on T1DM-affected human cortical bone identified the viability of osteocytes, the primary bone cells, as a potentially critical factor in T1DM-bone disease. We linked T1DM with increased osteocyte apoptosis and local accumulation of mineralized lacunar spaces and microdamage. Such structural changes in bone tissue suggest that T1DM speeds up the adverse effects of aging, leading to the premature death of osteocytes and potentially contributing to diabetes-related bone fragility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2023.02.037 | DOI Listing |
Int J Surg
September 2025
Department of Radiology, Sichuan Provincial People's Hospital East Sichuan Hospital&Dazhou First People's Hospital, Dazhou, China.
Ann Nucl Med
September 2025
Department of Nuclear Medicine, Marmara University School of Medicine, Istanbul, Turkey.
Objective: This study aims to systematically evaluate the inter- and intra-observer agreement regarding lesions with uncertain malignancy potential in Ga-68 PSMA PET/CT imaging of prostate cancer patients, utilizing the PSMA-RADS 2.0 classification system, and to emphasize the malignancy evidence associated with these lesions.
Methods: We retrospectively reviewed Ga-68 PSMA PET/CT images of patients diagnosed with prostate cancer via histopathology between December 2016 and November 2023.
Lasers Med Sci
September 2025
Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
Microbial contamination of absorbable collagen membranes used in guided bone regeneration (GBR) may compromise healing outcomes. This study aimed to investigate whether the minimum inhibitory concentration (MIC) of hydrogen peroxide (HO) can improve the antibacterial effect of indocyanine green (ICG)-mediated antimicrobial photodynamic therapy (PDT) on absorbable collagen membranes while reducing the need for high HO concentrations. A laboratory-based model was developed using Streptococcus sanguinis and Staphylococcus aureus.
View Article and Find Full Text PDFJ Pathol
September 2025
The North of England Bone and Soft Tissue Tumour Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
Indocyanine green (ICG) is a well-established near-infrared dye which has been used clinically for several decades. Recently, it has been utilised for fluorescence-guided surgery in a range of solid cancer types, including sarcoma, with the aim of reducing the positive margin rate. The increased uptake and retention of ICG within tumours, compared with normal tissue, gives surgeons a visual reference to aid resection when viewed through a near-infrared camera.
View Article and Find Full Text PDFTissue Eng Regen Med
September 2025
Department of Joint and Sports Medicine, Chaoyang Central Hospital, Chaoyang City, Liaoning Province, China.
Background: Osteoarthritis (OA) represents a major global health challenge with no ideal treatment options available. Early-stage treatment typically focuses on symptomatic relief of pain and stiffness; while late-stage patients can only opt for surgical interventions such as joint replacement to improve quality of life. Cell-free therapy based on extracellular vesicles (EVs) has offered a novel therapeutic approach for regulating bone metabolism and repairing cartilage, demonstrating emerging potential.
View Article and Find Full Text PDF