Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Strain robustness during production of recombinant molecules is of major interest to ensure bioprocess profitability. The heterogeneity of populations has been shown in the literature as a source of instability in bioprocesses. Thus, the heterogeneity of the population was studied by evaluating the robustness of the strains (stability of plasmid expression, cultivability, membrane integrity and macroscopic cell behavior) during well-controlled fedbatch cultures. On the context of microbial production of chemical molecules, isopropanol (IPA) has been produced by recombinant strains of Cupriavidus necator. Plasmid stability was monitored by the plate count method to assess the impact of isopropanol production on plasmid stability, depending on implanted plasmid stabilization systems for strain engineering designs. With the reference strain Re2133/pEG7c, an isopropanol titer of 15.1 g·L could be achieved. When the isopropanol concentration has reached about 8 g. L, cell permeability increased (up to 25 %) and plasmid stability decreased significantly (up to 1.5 decimal reduction rate) resulting in decreased isopropanol production rates. Bioprocess robustness under isopropanol producing conditions was then investigated with two plasmid construction strategies (1) Post Segregational Killing hok/sok (in Re2133/pEG20) and (2) expression of GroESL chaperon proteins (in Re2133/pEG23). Plasmid stability for strain Re2133/pEG20 (PSK hok/sok) appears to be improved up to 11 g. L of IPA compared to the reference strain (8 g. L IPA). Nevertheless, cell permeability followed the same dynamic as the reference strain with a drastic increase around 8 g. L IPA. On the contrary, the Re2133/pEG23 strain made it possible to minimize the cell permeability (with a constant value at 5 % IP permeability) and to increase the growth capacities in response to increased isopropanol concentrations but plasmid stability was the weakest. The metabolic burden, linked to either the overexpression of GroESL chaperones or the PSK hok/sok system, seems to be deleterious for the overall isopropanol production compared to the reference strain (RE2133/pEG7c) even if we have shown that the overexpression chaperones GroESL improve membrane integrity and PSK system hok/sok improve plasmid stability as long as isopropanol concentration does not exceed 11 g L.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiotec.2023.02.011DOI Listing

Publication Analysis

Top Keywords

plasmid stability
24
isopropanol production
16
reference strain
16
cell permeability
12
isopropanol
10
plasmid
9
plasmid stabilization
8
stabilization systems
8
strain
8
membrane integrity
8

Similar Publications

Using an in situ nucleosome stability assay based on salt extraction, we identified distinct stability features of H2A.Z-containing nucleosomes linked to alternative interactions of the histone variant's C-terminal tail (Imre et al., Nat.

View Article and Find Full Text PDF

Ferritin is a shell-like carrier protein with an 8 nm diameter cavity that naturally provides a space for encapsulating food and drug components. In the absence of iron atoms bound to this protein, it is called apoferritin, the form used in this study. However, its vulnerability to environmental conditions when used alone warrants further investigation.

View Article and Find Full Text PDF

Co-existence of mcr-1 and bla from porcine-derived Escherichia coli isolated in China and selection of mcr-1 under cephalosporins pressure.

J Glob Antimicrob Resist

September 2025

Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun, Jilin 130122, China. Electronic address:

Objectives: The usage of cephalosporins (CEFs) and co-existence of extended-spectrum β-lactamase (ESBL) gene bla in the same host may promote the prevalence of colistin (CST) resistance gene mcr-1. This study aims to investigate the underlying mechanisms how the mcr-1 and bla demonstrate significant co-occurrence in Escherichia coli (E. coli).

View Article and Find Full Text PDF

Impact of Stimuli-Responsiveness on the mRNA Delivery Efficiency of Low-Generation Dendrimer Nanogels.

Biomacromolecules

September 2025

State Key Laboratory of Advanced Fiber Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.

Development of efficient and stimuli-responsive gene delivery systems for therapeutic protein expression and immunomodulation remains challenging. Here, we report the synthesis of three types of pH-, reactive oxygen species (ROS)- and glutathione (GSH)-responsive dendrimer nanogels (for short, DNGs-pH, DNGs-ROS, and DNGs-GSH, respectively) a microemulsion method for delivery of messenger RNA (mRNA) and plasmid DNA (pDNA), both encoding enhanced green fluorescent protein (for short, mEGFP and pEGFP), to dendritic cells (DCs). The synthesized DNGs exhibit a nanoscale dimension, high monodispersity, desired colloidal stability, low cytotoxicity, and efficient gene delivery efficiency.

View Article and Find Full Text PDF

An Escherichia coli Nissle 1917-based live therapeutics platform with integrated phage resistance and programmable temperature sensitivity.

J Control Release

September 2025

State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, PR China. Electronic address:

Live bacterial therapeutics (LBT) represent a transformative modality for managing refractory chronic diseases. However, the absence of optimized microbial chassis systems is a significant barrier to clinical translation. To bridge this gap, we engineered Escherichia coli Nissle 1917 (EcN) into a versatile platform that meets the requirements for strain development and clinical application.

View Article and Find Full Text PDF