98%
921
2 minutes
20
The leading view in the somatosensory system indicates that area 3b serves as a cortical relay site that primarily encodes (cutaneous) tactile features limited to individual digits. Our recent work argues against this model by showing that area 3b cells can integrate both cutaneous and proprioceptive information from the hand. Here, we further test the validity of this model by studying multi-digit (MD) integration properties in area 3b. In contrast to the prevailing view, we show that most cells in area 3b have a receptive field (RF) that extends to multiple digits, with the size of the RF (i.e., the number of responsive digits) increasing across time. Further, we show that MD cells' orientation angle preference is highly correlated across digits. Taken together, these data show that area 3b plays a larger role in generating neural representations of tactile objects, as opposed to just being a "feature detector" relay site.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12120968 | PMC |
http://dx.doi.org/10.1016/j.celrep.2023.112176 | DOI Listing |
Neurosci Biobehav Rev
September 2025
Department of Experimental and Applied Psychology, Institute for Brain and Behaviour, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam. Electronic address:
Human vision deals with two major limitations. First, vision is strongly foveated and deteriorates with eccentricity. Second, visual attention selectively prioritizes some stimuli over others.
View Article and Find Full Text PDFMed Phys
September 2025
School of Computer, Electronics and Information, Guangxi University, Nanning, China.
Background: Deformable medical image registration is a critical task in medical imaging-assisted diagnosis and treatment. In recent years, medical image registration methods based on deep learning have made significant success by leveraging prior knowledge, and the registration accuracy and computational efficiency have been greatly improved. Models based on Transformers have achieved better performance than convolutional neural network methods (ConvNet) in image registration.
View Article and Find Full Text PDFCommun Biol
September 2025
Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, UK.
Primate lateral intraparietal area (LIP) has been directly linked to perceptual categorization and decision-making. However, the intrinsic LIP circuitry that gives rise to the flexible generation of motor responses to sensory instruction remains unclear. Using retrograde tracers, we delineate two distinct operational compartments based on different intrinsic connectivity patterns of dorsal and ventral LIP.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
September 2025
In industrial scenarios, semantic segmentation of surface defects is vital for identifying, localizing, and delineating defects. However, new defect types constantly emerge with product iterations or process updates. Existing defect segmentation models lack incremental learning capabilities, and direct fine-tuning (FT) often leads to catastrophic forgetting.
View Article and Find Full Text PDFCereb Cortex
August 2025
Nencki Institute of Experimental Biology, PAS, 3 Pasteur Street, 02-093 Warsaw, Poland.
In the visual cortices, receptive fields (RFs) are arranged in a gradient from small sizes in the center of the visual field to the largest sizes at the periphery. Using functional magnetic resonance imaging (fMRI) mapping of population RFs, we investigated RF adaptation in V1, V2, and V3 in patients after long-term photoreceptor degeneration affecting the central (Stargardt disease [STGD]) and peripheral (Retinitis Pigmentosa [RP]) regions of the retina. In controls, we temporarily limited the visual field to the central 10° to model peripheral loss.
View Article and Find Full Text PDF