Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
We demonstrate experimental evidence of the effect of surface plasmon resonance of noble metal nanoparticles (NPs) on the activity of a well-known biomedicinal drug in the proximity of a semiconductor having a wide band gap for enhanced photodynamic therapy (PDT) efficacy. We have chosen riboflavin (Rf) (or vitamin B) as a model photosensitizer, attached with ZnO NPs and further attached with gold (Au) NP-decorated ZnO to increase the efficiency. The synthesized nanohybrids are characterized with the help of different microscopic, optical spectroscopic, and density functional theory (DFT)-based techniques. The DFT and time-dependent DFT-based calculations validate the experimental findings. A detailed ultrafast spectroscopic study has been carried out further to study the excited-state charge dynamics in the interface of the nanohybrids. The occurrence of a Förster resonance energy transfer (FRET) between Rf and Au has been found to be the key reason for the increased efficiency in the Rf-ZnO-Au nanohybrid over the Rf-ZnO one. The dipolar coupling between Au and Rf in the Rf-ZnO-Au nanohybrid further facilitates the generation of reactive oxygen species (ROS) in comparison to Rf-ZnO under blue-light irradiation. The greater efficiency in ROS generation by the Rf-ZnO-Au nanohybrid has been utilized for antimicrobial action against methicillin-resistant (MRSA). Overall, the present study highlights the dual sensitization for achieving enhanced electron injection efficiency in the Rf-ZnO-Au nanohybrid in order to use it as an antibacterial agent that could be translated in PDT.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9718314 | PMC |
http://dx.doi.org/10.1021/acsphyschemau.1c00033 | DOI Listing |