Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Surface chemistry is increasingly important for a number of applications, from catalysis to molecular qubits. For the qubit application, it is imperative that the energy levels of surface species involved in the process of interest are energetically distinct-that is addressable and not buried below or coincident with the substrate energy levels. One way to afford this is through chemical functionalization with derivatives that impart the property of choice to the interface. In this Letter, we report on the nature of the bond between a carbene moiety and an MoS surface. With density functional theory (DFT) and spin-polarized calculations, we first observe states in the band structure that pertain to the carbene group and then prove their origin. Importantly, we find localized π-states in the band gap that are due to π-electrons that are part of a diene attached to the carbene carbon and are not available in bonding configurations without the π conjugation. These lead to open-shell monocationic structures involving midgap HOMOs with densities on the carbene moiety. Both neutral and cationic forms of the carbenes are energetically separate from the MoS substrate, thus useful for optical manipulation. We explore several different choices of the carbene moieties, and show that those based on fused thiophene and bithiophene structures are the most favorable for localization, while purely carbon-based aromatic structures lead to states that are delocalized onto the MoS and thus less useful. These findings are potentially of interest to the design and synthesis of future molecular qubit candidates for device fabrication.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9955177PMC
http://dx.doi.org/10.1021/acsphyschemau.1c00055DOI Listing

Publication Analysis

Top Keywords

energy levels
8
carbene moiety
8
carbene
5
localized surface
4
surface states
4
states molybdenum
4
molybdenum disulfide
4
disulfide carbene-functionalization
4
carbene-functionalization qubit
4
qubit design
4

Similar Publications

Dietary lignan intake and body fat distribution in U.S. adolescents.

Pediatr Res

September 2025

Department of Digestive & Nutrition, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China.

Background: Body fat distribution patterns impact adolescent health, yet research on dietary lignans' influence remains limited. This study investigated their association among U.S.

View Article and Find Full Text PDF

Active metasurfaces incorporating electro-optic materials enable high-speed free-space optical modulators that show great promise for a wide range of applications, including optical communication, sensing and computing. However, the limited light-matter interaction lengths in metasurfaces typically require high driving voltages exceeding tens of volts to achieve satisfactory modulation. Here we present low-voltage, high-speed free-space optical modulators based on silicon-organic-hybrid metasurfaces with dimerized-grating-based nanostructures.

View Article and Find Full Text PDF

Investigation into the Regulation of Ag NPs/ZnO NRs/GaN Heterostructure SERS Substrate via Pyroelectric Effects.

J Phys Chem Lett

September 2025

Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan 250014, P.R. China.

Heterostructures have emerged as promising contenders for surface-enhanced Raman scattering (SERS) applications. Nevertheless, the construction of a composite SERS substrate with well-matched energy levels persists as a challenge, primarily due to the restricted selection of SERS-active materials. In this study, we successfully synthesized a Ag nanoparticles (NPs)/ZnO nanorods (NRs)/GaN heterojunction featuring type II staggered energy bands, which provides an outstanding platform for efficient SERS detection.

View Article and Find Full Text PDF

Stress triggers neuroendocrine and physiological changes, often resulting in cognitive impairments and heightened anxiety. This study aims to investigate the effects of acute stress and epinephrine administration on learning, memory, and anxiety-like behavior, as well as their impact on proinflammatory cytokines, neurogranin expression, and brain energy metabolism. In this study, three experimental groups were established, each comprising eight rats: control, acute stress, and acute stress combined with epinephrine.

View Article and Find Full Text PDF

Temporal lobe epilepsy (TLE) patients experience shifts between non-seizing and seizing brain states, but the structural networks underlying these transitions remain undefined and poorly characterized. We detected dynamic brain states in resting-state fMRI and constructed linked structural networks utilizing multi-shell diffusion-weighted MR data. Leveraging network control theory, we interrogated the structural data for all possible brain state transitions, identifying those requiring abnormal levels of transition energy (low or high) in TLE compared to matched healthy participants (n's = 25).

View Article and Find Full Text PDF