Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Synthesis of a bidentate N,O-donor Schiff base fluorescent ligand 5-(diethylamino-2-((4-(diethylamino-2-((4-(diethylamino)phenylimino)ethyl)phenol) (HL) adopting a new preparation procedure and its complexes with Ni(II) (1) and Zn(II) (2) has been illustrated. Structures of HL and 1 have been elucidated using X-ray single crystal analysis. Moreover, HL leads to the formation of a mechanically stable Ni(II)-gel (MG) upon treatment with Ni(NO)·6HO in the presence of triethylamine (TEA) using THF/MeOH (1 : 1) solvents at rt. The gelator HL, complexes 1-2 and MG have been characterized by different spectroscopic and microscopic techniques including NMR (H & C), FT-IR, ESI-MS, SEM, powder-XRD, rheology, UV/vis and fluorescence analysis. Rheological studies suggested good mechanical and thermal stability, whereas SEM analysis reveals a porous earth crust-like morphology of MG. Notably, 1 : 1 complexation between HL and Ni(II) forms a stable gel (MG), whereas 2 : 1 (HL : Ni) complexation leads to partial gelation. Formation of the Ni(II)-MG leads to slight "Turn-OFF" fluorescence relative to HL with a limit of detection (LOD) of 7.76 × 10 M; however, MG is considered as the "ON" state due to moderate emission. Remarkably, Ni(II)-MG further displayed reversible "ON-OFF-ON" fluorescence switching behavior through detection of Zn, Cu and Hg. The emission intensity of MG is quenched with Cu/Hg but enhances with Zn in 1 : 1 (MG : M) stoichiometry. Therefore, MG mimics a sequence dependent molecular keypad lock for Cu (), Hg () and Zn () to give the maximum output. Association and quenching constants were calculated by the Benesi-Hildebrand method, and from the Stern-Volmer plot the LOD was determined to be 4.2 × 10 M, 5.8 × 10 M and 7.8 × 10 M for MG with Zn(II), Cu(II) and Hg(II), respectively. To date, Ni(II) based MGs have been explored only toward electrochemical, thermal and conduction studies; however, the present work demonstrates the fluorescent reversible cation detection behavior of Ni(II)-MG to act as a molecular keypad lock for development of password protection devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2dt03714a | DOI Listing |