Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

, , , , Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global challenge due to its ability to mutate into variants that spread more rapidly than the wild-type virus. The molecular biology of this virus has been extensively studied and computational methods applied are an example paradigm for novel antiviral drug therapies. The rapid evolution of SARS-CoV-2 in the human population is driven, in part, by mutations in the receptor-binding domain (RBD) of the spike (S-) protein, some of which enable tighter binding to angiotensin-converting enzyme (ACE2). More stable RBD-ACE2 association is coupled with accelerated hydrolysis by proteases, such as furin, trypsin, and the Transmembrane Serine Protease 2 (TMPRSS2) that augment infection rates, while inhibition of the 3-chymotrypsin-like protease (3CL) can prevent the viral replication. Additionally, non-RBD and non-interfacial mutations may assist the S-protein in adopting thermodynamically favorable conformations for stronger binding. This study aimed to report variant distribution of SARS-CoV-2 across European Union (EU)/European Economic Area (EEA) countries and relate mutations with the driving forces that trigger infections. Variants' distribution data for SARS-CoV-2 across EU/EEA countries were mined from the European Centre for Disease Prevention and Control (ECDC) based on the sequence or genotyping data that are deposited in the Global Science Initiative for providing genomic data (GISAID) and The European Surveillance System (TESSy) databases. Docking studies performed with AutoDock VINA revealed stabilizing interactions of putative antiviral drugs, e.g., selected anionic imidazole biphenyl tetrazoles, with the ACE2 receptor in the RBD-ACE2 complex. The driving forces of key mutations for Alpha, Beta, Gamma, Delta, Epsilon, Kappa, Lambda, and Omicron variants, which stabilize the RBD-ACE2 complex, were investigated by computational approaches. Arginine is the critical amino acid in the polybasic furin cleavage sites S1/S2 (681-PRRARS-686) S2' (814-KRS-816). Critical mutations into arginine residues that were found in the delta variant (L452R, P681R) and may be responsible for the increased transmissibility and morbidity are also present in two widely spreading omicron variants, named BA.4.6 and BQ.1, where mutation R346T in the S-protein potentially contributes to neutralization escape. Arginine binders, such as Angiotensin Receptor Blockers (ARBs), could be a class of novel drugs for treating COVID-19.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963001PMC
http://dx.doi.org/10.3390/v15020309DOI Listing

Publication Analysis

Top Keywords

driving forces
8
rbd-ace2 complex
8
omicron variants
8
mutations
6
sars-cov-2
5
molecular epidemiology
4
epidemiology sars-cov-2
4
sars-cov-2 dominant
4
dominant role
4
arginine
4

Similar Publications

The recent observational evidence of deviations from the Lambda cold dark matter model points toward the presence of evolving dark energy. The simplest possibility consists of a cosmological scalar field φ, dubbed "quintessence," driving the accelerated expansion. We assess the evidence for the existence of such a scalar field.

View Article and Find Full Text PDF

Emergent Self-Propulsion of Skyrmionic Matter in Synthetic Antiferromagnets.

Phys Rev Lett

August 2025

Universidade Federal de Pernambuco, Núcleo de Tecnologia, Centro Acadêmico do Agreste, Avenida Marielle Franco, Caruaru-PE, 55014-900, Brazil.

Self-propulsion plays a crucial role in biological processes and nanorobotics, enabling small systems to move autonomously in noisy environments. Here, we theoretically demonstrate that a bound skyrmion-skyrmion pair in a synthetic antiferromagnetic bilayer can function as a self-propelled topological object, reaching speeds of up to a hundred million body lengths per second-far exceeding those of any known synthetic or biological self-propelled particles. The propulsion mechanism is triggered by the excitation of back-and-forth relative motion of the skyrmions, which generates nonreciprocal gyrotropic forces, driving the skyrmion pair in a direction perpendicular to their bond.

View Article and Find Full Text PDF

Anthropogenic aerosols are an important driver of historical climate change but the climate response is not fully understood and the climate model simulations suffer large uncertainties. On the basis of a multimodel ensemble of historical aerosol forcing simulation for a period of global aerosol increase during 1965 to 1989, here, we show that the precipitation response shares a common southward displacement of tropical rain bands but the magnitude differs markedly among models, accounting for 76% of the intermodel uncertainty in zonal-mean precipitation change. Our analysis of atmospheric energetics further reveals key mechanisms for magnitude uncertainty: aerosol radiative forcing drives, cloud radiative feedback amplifies, and ocean circulation damps the intermodel uncertainty in cross-equatorial atmospheric energy transport change and the meridional shift of tropical rain bands.

View Article and Find Full Text PDF

Children affected by armed conflict suffer devastating physical, emotional, and social harm. War uproots families, forcing many to flee as refugees or internally displaced persons, while others remain trapped in dangerous environments. In these crises, children face disproportionate risks-violence, exploitation, disrupted education, and collapsed healthcare systems.

View Article and Find Full Text PDF

Recent Progress of 3D Printing Bioceramic Scaffolds for Bone Regeneration.

Tissue Eng Part B Rev

September 2025

The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China.

The reconstruction of critical-sized bone defects remains a challenging clinical problem. At present, the implantation of autogenous and allogeneic grafts is the main clinical treatment strategy but faces some drawbacks, such as inadequate source, donor site-related complications, and immune rejection, driving researchers to develop artificial bone substitutes based on distinct materials and fabrication technologies. Among the bone substitutes, bioceramic-based substitutes exhibit a remarkable biocompatibility, which can also be designed to degrade concomitantly with the formation of new bone.

View Article and Find Full Text PDF