A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

MonkeyNet: A robust deep convolutional neural network for monkeypox disease detection and classification. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The monkeypox virus poses a new pandemic threat while we are still recovering from COVID-19. Despite the fact that monkeypox is not as lethal and contagious as COVID-19, new patient cases are recorded every day. If preparations are not made, a global pandemic is likely. Deep learning (DL) techniques are now showing promise in medical imaging for figuring out what diseases a person has. The monkeypox virus-infected human skin and the region of the skin can be used to diagnose the monkeypox early because an image has been used to learn more about the disease. But there is still no reliable Monkeypox database that is available to the public that can be used to train and test DL models. As a result, it is essential to collect images of monkeypox patients. The "MSID" dataset, short form of "Monkeypox Skin Images Dataset", which was developed for this research, is free to use and can be downloaded from the Mendeley Data database by anyone who wants to use it. DL models can be built and used with more confidence using the images in this dataset. These images come from a variety of open-source and online sources and can be used for research purposes without any restrictions. Furthermore, we proposed and evaluated a modified DenseNet-201 deep learning-based CNN model named MonkeyNet. Using the original and augmented datasets, this study suggested a deep convolutional neural network that was able to correctly identify monkeypox disease with an accuracy of 93.19% and 98.91% respectively. This implementation also shows the Grad-CAM which indicates the level of the model's effectiveness and identifies the infected regions in each class image, which will help the clinicians. The proposed model will also help doctors make accurate early diagnoses of monkeypox disease and protect against the spread of the disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9943560PMC
http://dx.doi.org/10.1016/j.neunet.2023.02.022DOI Listing

Publication Analysis

Top Keywords

monkeypox disease
12
monkeypox
9
deep convolutional
8
convolutional neural
8
neural network
8
will help
8
disease
5
monkeynet robust
4
deep
4
robust deep
4

Similar Publications