Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Selective photoactivation of inert aryl halides is a fundamental challenge in organic synthesis. Specially, the long-wavelength red light is more desirable than the widely-applied blue light as the excitation source for photoredox catalysis, due to its superior penetration depth. However, the long-wavelength red light-driven photoactivation of inert aryl halides remains a challenge, mainly because of the low energy of the single long-wavelength red photon. Herein, we report the photoreduction of aryl bromides/chlorides with 656 nm LED via triplet-triplet annihilation (TTA) strategy. This method is based on our discovery that the commonly used chromophore of perylene can serve as an efficient and metal-free photocatalyst to enable the photoreduction of inert aryl halides without the conventional need for electronic sacrificial agents. By introducing a red light-absorbing photosensitizer to this perylene system, we accomplish the long-wavelength red light-driven photoreduction of aryl halides via sensitized TTA mechanism. Moreover, the performance of such a TTA-mediated photoreduction can be significantly enhanced when restricting the rotation freedom of phenyl moiety for perylene derivatives to suppress their triplet nonradiative transition, in both small and large-scale reaction settings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9968713 | PMC |
http://dx.doi.org/10.1038/s41467-023-36679-7 | DOI Listing |