Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The main purpose of this study is to synthesize and characterize Persian gum-based hydrogel composited with gentamicin (Gen)-loaded natural zeolite (Clinoptilolite) and to evaluate its biological properties. Clinoptilolite (CLN) was decorated with Gen, and the conjugation was confirmed using computational and experimental assessments. The Monte Carlo adsorption locator module was used to reveal the physicochemical nature of the adsorption processes of Gen on CLN and ALG and gum on Gen@ CLN in Materials Studio 2017 software. Based on the high negative results, the adsorption process was found to be endothermic in all studied cases, and the interaction energies were in the range of physisorption for Gen on CLN and ALG and gum on Gen@CLN. Dynamic light scattering (DLS) and zeta potential analysis showed that the size of pristine CLN was around 2959 nm and the conjugation decreased the size significantly to approximately 932 nm. The hydrogel characterizations showed that the Gen-decorated CLNs are homogenously dispersed into the hydrogel matrix, and the resultant hydrogels have a porous structure with interconnected pores. The release kinetics evaluation showed that around 80 % of Gen was released from the nanocomposite drug during the first 10 h. In vitro studies revealed hemocompatibility and cytocompatibility of the nanocomposite. Microbial assessments indicated dose-dependent antibacterial activity of the hydrogel against gram (+) and gram (-) bacteria. The results showed that the fabricated hydrogel nanocomposite exhibits favorable physicochemical and biological properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.123766DOI Listing

Publication Analysis

Top Keywords

persian gum-based
8
gum-based hydrogel
8
natural zeolite
8
biological properties
8
gen cln
8
cln alg
8
alg gum
8
hydrogel
6
cln
5
fabrication characterization
4

Similar Publications

This study aimed to produce bio-nanocomposites based on Persian gum-starch using electrosprayed gliadin nanoparticles (EGNPs) containing cinnamon essential oil (CEO) to increase the shelf life of rainbow trout fillets and to model its in vitro release. The CEO with 5, 10, and 15 % w/w were loaded in the EGNPs. The EGNPs containing 10 % w/w CEO had the highest encapsulation efficiency (92.

View Article and Find Full Text PDF

The main purpose of this study is to synthesize and characterize Persian gum-based hydrogel composited with gentamicin (Gen)-loaded natural zeolite (Clinoptilolite) and to evaluate its biological properties. Clinoptilolite (CLN) was decorated with Gen, and the conjugation was confirmed using computational and experimental assessments. The Monte Carlo adsorption locator module was used to reveal the physicochemical nature of the adsorption processes of Gen on CLN and ALG and gum on Gen@ CLN in Materials Studio 2017 software.

View Article and Find Full Text PDF

Gum-based nanocarriers for the protection and delivery of food bioactive compounds.

Adv Colloid Interface Sci

July 2019

Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran. Electronic address:

Gums, which for the most part are water-soluble polysaccharides, can interact with water to form viscous solutions, emulsions or gels. Their desirable properties, such as flexibility, biocompatibility, biodegradability, availability of reactive sites for molecular interactions and ease of use have led to their extremely large and broad applications in formation of nanostructures (nanoemulsions, nanoparticles, nanocomplexes, and nanofibers) and have already served as important wall materials for a variety of nano encapsulated food ingredients including flavoring agents, vitamins, minerals and essential fatty acids. The most common gums used in nano encapsulation systems include Arabic gum, carrageenan, xanthan, tragacanth plus some new sources of non-traditional gums, such as cress seed gum and Persian/or Angum gum identified as potential building blocks for nanostructured systems.

View Article and Find Full Text PDF