Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

(CJ) is widely distributed in Asian countries like Korea, China, and Japan. Modern pharmacological studies have demonstrated that it exhibits various biological activities, including antioxidant and anti-inflammatory effects. However, most studies have confirmed the efficacy of its water extract but not that of its other extracts. Therefore, in this study, Siebold branches (CJB: 70% EtOH extract) were separated using hexane, chloroform, ethyl acetate (CJB3), butanol, and water. Then, their antioxidative activities and phenolic contents were measured. Results revealed that the antioxidant activities and phenolic contents of CJB3 were higher than those of the other extracts. Further, the inhibitory and anti-inflammatory effect of CJB3 on lipopolysaccharide (LPS)-induced reactive oxygen species (ROS) production and LPS-activated macrophages, respectively, was determined. CJB3 suppressed oxidative stress in LPS-activated cells and dose-dependently decreased LPS-stimulated ROS production. CJB3 reduced oxidative stress and reversed the glutathione decrease in LPS-activated RAW264.7 cells. The inhibitory and reducing effect of CJB3 on LPS-induced nitric oxide (NO) production and inducible NO synthase protein and messenger RNA levels, respectively, was investigated. CJB3 inhibited LPS-induced cytokine production and p38 and c-Jun N-terminal kinase (JNK) phosphorylation but not extracellular signal-regulated kinase phosphorylation. Overall, the study results suggest that CJB3 may exert its anti-inflammatory effects via the suppression of p38, JNK, and c-Jun activation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9960860PMC
http://dx.doi.org/10.3390/molecules28041974DOI Listing

Publication Analysis

Top Keywords

ros production
12
p38 jnk
8
jnk phosphorylation
8
anti-inflammatory effects
8
cjb3
8
activities phenolic
8
phenolic contents
8
oxidative stress
8
production
5
siebold branch
4

Similar Publications

Decades of antibiotic misuse have spurred an antimicrobial resistance crisis, creating an urgent demand for alternative treatment options. Although phototherapy has therapeutic potential, the efficacy of the most advanced photosensitizers (PS) is essentially limited by aggregation-induced quenching, which significantly reduces their therapeutic effect. To address these challenges, we developed a cationic metallocovalent organic framework (CRuP-COF) via a solvent-mediated dual-reaction synthesis strategy.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) are responsible for the oxidative truncation of polyunsaturated fatty acids (PUFAs). The products of these reactions have been implicated in many diseases such as cancer and atherosclerosis. As increasing attention is directed toward these oxidized phospholipids (oxPLs), higher throughput methods are needed to examine interactions between oxPLs and scavenger receptors in the immune system.

View Article and Find Full Text PDF

Background: Patients with chronic lung diseases often suffer from pulmonary aspergillosis, caused by Aspergillus fumigatus (AF). Alveolar macrophages play a key role in the initial immune response to AF. Azithromycin (AZM), commonly known for its immunomodulatory properties in reducing exacerbations and improving lung function, has mixed effects on the development of aspergillosis.

View Article and Find Full Text PDF

Repetitive transcranial magnetic stimulation alleviates radiation-induced brain injury in rats: involving the inhibition of ferroptosis.

Neurosci Lett

September 2025

Institute of Neuroscience & Department of Physiology, Hengyang Medical School, University of South China, Hengyang 421001 Hunan, PR China; NHC Key Laboratory of Neurodegenerative Disease (University of South China), Hengyang 421001 Hunan, PR China; The Second Affiliated Hospital, Brain Disease Resea

Radiation-induced brain injury (RIBI) is a prevalent complication following radiotherapy for head and neck tumors, and its effective therapeutic strategies are lacking. Ferroptosis, an iron-dependent cell death, has recently emerged as an important mechanism of radiation-induced cell death. Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive neuro-interventional technique with antioxidant and neuroprotective properties.

View Article and Find Full Text PDF

Polyploidy, a conserved mechanism involved in normal development and tissue homeostasis, plays a paradoxical role in cancer by facilitating both tumor progression and therapeutic vulnerability. Although polyploidization may confer survival advantages to cancer cells, its controlled induction could represent an effective anticancer strategy. Aurora B kinase, a critical regulator of mitosis, plays a pivotal role in ensuring chromosomal integrity and preventing polyploidy.

View Article and Find Full Text PDF