98%
921
2 minutes
20
The African nutmeg () is a medically useful plant. We, herein, aimed to critically examine whether bioactive compounds identified in the extracted oil of could act as antimicrobial agents. To this end, we employed the Schrödinger platform as the computational tool to screen bioactive compounds identified in the oil of . Our lead compound displayed the highest potency when compared with levofloxacin based on its binding affinity. The hit molecule was further subjected to an Absorption, Distribution, Metabolism, Excretion (ADME) prediction, and a Molecular Dynamics (MD) simulation was carried out on molecules with PubChem IDs 529885 and 175002 and on three standards (levofloxacin, cephalexin, and novobiocin). The MD analysis results demonstrated that two molecules are highly compact when compared to the native protein; thereby, this suggests that they could affect the protein on a structural and a functional level. The employed computational approach demonstrates that conformational changes occur in DNA gyrase after the binding of inhibitors; thereby, this resulted in structural and functional changes. These findings expand our knowledge on the inhibition of bacterial DNA gyrase and could pave the way for the discovery of new drugs for the treatment of multi-resistant bacterial infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9966190 | PMC |
http://dx.doi.org/10.3390/molecules28041593 | DOI Listing |
PLoS Genet
September 2025
Dept of Biology, Portland State University, Portland, Oregon, United States of America.
The ability to complete DNA replication as replisomes converge has recently been shown to be a highly-regulated, multi-enzymatic process. Converging forks also are likely to generate unique supercoiled, tangled, or knotted substrates. These structures are typically resolved by one of the four topoisomerases encoded by Escherichia coli.
View Article and Find Full Text PDFArch Microbiol
September 2025
Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, India.
Salmonella enterica serovar Typhi, the etiological agent of Typhoid fever, remains a critical public health concern associated with high morbidity in many developing countries. The widespread emergence of multidrug-resistant (MDR) Salmonella Typhi strains against the fluoroquinolone group of antibiotics, particularly ciprofloxacin, poses a significant global therapeutic challenge with underlying resistance due to mutations in quinolone-resistance determining region (QRDR) of gyrA gene, encoding DNA gyrase subunit A (GyrA). In pursuit of alternative therapeutic candidates, the present study was designed to evaluate ciprofloxacin analogues against prevalent GyrA mutations (S83F, D87G, and D87N) to overcome fluoroquinolone resistance through machine learning (ML)-based approach.
View Article and Find Full Text PDFRSC Adv
August 2025
Department of Chemistry, Research Centre HPT Arts and RYK Science College (Affiliated to S. P. Pune University) Nashik Maharashtra 422005 India
The persistent threat of pathogenic microorganisms demands the development of innovative scaffolds with dual antibacterial and antifungal activities. Herein, we report the synthesis and characterization of a novel series of benzothiazole-thiazole hybrids (4a-4f) a three-step route, confirmed by NMR and MS analyses. The compounds were screened against Gram-positive, Gram-negative, mycobacterial, and fungal strains using disk diffusion and REMA assays.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Polymer Institute of the Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia; Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab Ci
This study involves the synthesis of a novel 7-ethoxy-3-formyl-2-morpholino quinoline (MQ) derivative, which was hybridized with aminated chitosan (AMCH) to yield a new AMCH-MQ Schiff base. Structural characterization via H NMR, FTIR, electronic spectra, XRD, and TGA confirmed successful hybridization. Ion exchange capacity decreased from 28.
View Article and Find Full Text PDFBioorg Chem
August 2025
Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China. Electronic address:
This work developed a class of unique benzopyronyl imidazolidinediones (BIs) as new structural skeleton of potential multitargeting antibacterial agents to confront dreadful Staphylococcus aureus infections. Some target compounds exhibited effective antibacterial activities against the tested strains. Especially, butyl BI 6c and 5-hydroxy BI 26d exerted excellent inhibitory activity toward Staphylococcus aureus ATCC 25923 and MRSA 43300 with a low MIC value of 0.
View Article and Find Full Text PDF