Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Heme is an essential cofactor for multiple cellular processes in most organisms. In developing erythroid cells, the demand for heme synthesis is high, but is significantly lower in non-erythroid cells. While the biosynthesis of heme in metazoans is well understood, the tissue-specific regulation of the pathway is less explored. To better understand this, we analyzed the mitochondrial heme metabolon in erythroid and non-erythroid cell lines from the perspective of ferrochelatase (FECH), the terminal enzyme in the heme biosynthetic pathway. Affinity purification of FLAG-tagged-FECH, together with mass spectrometric analysis, was carried out to identify putative protein partners in human and murine cell lines. Proteins involved in the heme biosynthetic process and mitochondrial organization were identified as the core components of the FECH interactome. Interestingly, in non-erythroid cell lines, the FECH interactome is highly enriched with proteins associated with the tricarboxylic acid (TCA) cycle. Overall, our study shows that the mitochondrial heme metabolon in erythroid and non-erythroid cells has similarities and differences, and suggests new roles for the mitochondrial heme metabolon and heme in regulating metabolic flux and key cellular processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9958551PMC
http://dx.doi.org/10.3390/life13020577DOI Listing

Publication Analysis

Top Keywords

erythroid non-erythroid
12
non-erythroid cells
12
mitochondrial heme
12
heme metabolon
12
cell lines
12
heme
9
cellular processes
8
metabolon erythroid
8
non-erythroid cell
8
heme biosynthetic
8

Similar Publications

TRIM10β upregulation promotes microtubule destabilization and triggers proteotoxic stress.

Cell Signal

November 2025

Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea; Interdisciplinary Program of Integrated OMICS for Biomedical Science, Yonsei University, Seoul 03722, South Korea. Electronic address:

Microtubule stability is critical for maintaining cytoskeletal integrity and is finely tuned by post-translational modifications of tubulin and its associated regulatory factors. However, it remains unclear how microtubules become destabilized under stress or disease conditions and contribute to pathogenesis. Here, we identify TRIM10β, a previously uncharacterized splice variant of TRIM10, as a microtubule-associated protein that disrupts the interaction between tubulin and End Binding protein 1 (EB1), which plays a critical role in microtubule stabilization.

View Article and Find Full Text PDF

The evolution of acute myeloid leukemia (AML) classifications has progressively shifted the diagnostic focus toward genetic criteria. Nevertheless, morphology remains a key element in clinical practice, often serving as the initial trigger for additional molecular investigations. The diagnosis of acute erythroleukemia (AEML), initially defined by the FAB group, is no longer recognized as a distinct entity in the latest WHO and ICC classifications.

View Article and Find Full Text PDF

Erythropoietin (EPO) is a key regulator of erythrocyte production, promoting erythroid progenitor cell survival, division, and differentiation in the fetal liver and adult bone marrow. Mice lacking EPO or its receptor (EPOR) die in utero due to severe anemia. Beyond hematopoiesis, EPO influences non-hematopoietic tissues, including glucose and fat metabolism in adipose tissue, skeletal muscle, and the liver.

View Article and Find Full Text PDF

New hematopoietic cell models have recently emerged through immortalization of CD34 cells to study and understand various molecular mechanisms of erythropoiesis. Here, we characterize the JK-1 CML-derived cell line, previously shown to spontaneously differentiate without cytokines. Using an epigenetic differentiation inhibitor that keeps JK-1 in an early differentiation phase, we characterized 2 progenitor stages: BFU-E JK-1 and CFU-E JK-1 with CD34+/CD36- and CD34-/CD36 + phenotypes respectively.

View Article and Find Full Text PDF

Growth hormone is involved in GATA1 gene expression via STAT5B in human erythroleukemia and monocytic cell lines.

Blood Cells Mol Dis

February 2025

Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan; Clinical Research Institute for Endocrine and Metabolic Diseases, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan. Electronic address:

Article Synopsis
  • GATAs are a transcription factor family with six members, where GATA1 and GATA2 are crucial for the development of specific blood cells like erythrocytes and eosinophils.
  • The study explores whether growth hormone (GH) acts as an external stimulant for GATA1 expression in blood cell lines, employing various lab techniques to assess this relationship.
  • Results indicate that GH enhances GATA1 expression through a pathway involving the GHR/JAK/STAT5 signaling mechanism, indicating its role in the proliferation of hematopoietic cells.
View Article and Find Full Text PDF