A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Finite Element Models of Gold Nanoparticles and Their Suspensions for Photothermal Effect Calculation. | LitMetric

Finite Element Models of Gold Nanoparticles and Their Suspensions for Photothermal Effect Calculation.

Bioengineering (Basel)

Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.

Published: February 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

(1) Background: The ability of metal nanoparticles to carry other molecules and their electromagnetic interactions can be used for localized drug release or to heat malignant tissue, as in the case of photothermal treatments. Plasmonics can be used to calculate their absorption and electric field enhancement, which can be further used to predict the outcome of photothermal experiments. In this study, we model the nanoparticle geometry in a Finite Element Model calculus environment to calculate the effects that occur as a response to placing it in an optical, electromagnetic field, and also a model of the experimental procedure to measure the temperature rise while irradiating a suspension of nanoparticles. (2) Methods: Finite Element Method numerical models using the COMSOL interface for geometry and mesh generation and iterative solving discretized Maxwell's equations; (3) Results: Absorption and scattering cross-section spectrums were obtained for NanoRods and NanoStars, also varying their geometry as a parameter, along with electric field enhancement in their surroundings; temperature curves were calculated and measured as an outcome of the irradiation of different concentration suspensions; (4) Conclusions: The results obtained are comparable with the bibliography and experimental measurements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9952663PMC
http://dx.doi.org/10.3390/bioengineering10020232DOI Listing

Publication Analysis

Top Keywords

finite element
12
electric field
8
field enhancement
8
element models
4
models gold
4
gold nanoparticles
4
nanoparticles suspensions
4
suspensions photothermal
4
photothermal calculation
4
calculation background
4

Similar Publications