98%
921
2 minutes
20
Retinoids are considered the mainstay treatment for moderate to severe acne. Adapalene, a third-generation retinoid, has physiochemical properties which hinder the effective delivery of the drug to the skin. Therefore, the current study aimed to develop and evaluate adapalene liposomal loaded gel (ADA-LP gel) for the effective management of acne to improve tolerability and delivery to targeted sites as compared to the conventional dosage form of the drug. A novel spontaneous phase transition method (SPT) was used to formulate liposomes. Liposomal formulation (ADA-LP) was prepared and optimized based on particle size, zeta potential, and PDI. Optimized formulation was further characterized by different techniques and loaded into Carbopol gel. In vitro drug release, ex vivo permeation, and in vivo studies were performed using the prepared adapalene-loaded liposomal-based gel. The in vivo study was done employing the testosterone-induced acne model in mice. The optimized formulation had a size of 181 nm, PDI 0.145, and a zeta potential of -35 mV, indicating that the formulation was stable. Encapsulation efficiency was 89.69 ± 0.5%. ADA-LPs were loaded into the gel. Prepared ADA-LP showed a 79 ± 0.02% release of drug in a sustained manner, within 24 h. The ex vivo permeability study showed a total of 43 ± 0.06 µg/cm of drug able to permeate through the skin within 24 h. Moreover, only 28.27 ± 0.04% was retained on the epidermis. The developed ADA-LP gel showed significant improvement in the acne lesions in mice with no visible scars and inflammation on the skin. Therefore, ADA-LP-based gel could be a promising carrier system for the safe and effective delivery of Adapalene.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9956198 | PMC |
http://dx.doi.org/10.3390/gels9020135 | DOI Listing |
Macromol Biosci
September 2025
Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
Conventional gelatin's gel-to-sol transition upon heating restricts its utility in biomedical applications that benefit from a gel state at physiological temperatures such as Pluronic F127 and poly(NIPAAm). Herein, we present "rev-Gelatin", a gelatin engineered with reverse thermo-responsive properties that undergoes a sol-to-gel transition as temperature rises from ambient to body temperature. Inspired by the phase dynamics of common materials like candy and ice cubes, whose surfaces soften or partially melt under warming, facilitating inter-object adhesion- rev-Gelatin leverages this concept to achieve fluidity at room temperature for easy injectability.
View Article and Find Full Text PDFRegen Med
September 2025
Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis School of Biological Sciences (SSBS), Symbiosis International, Deemed University, Lavale, Pune, India.
Aims: This study aimed to enhance the osteoinductive potential of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) by integrating them into a nano-hydroxyapatite (nHAp)-enriched hydrogel scaffold for bone regeneration applications.
Materials & Methods: EVs were isolated from naïve and osteogenically primed MSCs and characterized for morphology, cargo content, and cytocompatibility. Their uptake and osteoinductive activity were assessed using MC3T3 cells within a 3D interpenetrating network (IPN) hydrogel.
Drug Dev Ind Pharm
September 2025
Department of Pharmaceutics, Mallige College of Pharmacy, Silvepura, Bangalore -560090.
ObjectivesThis review aims to explore gelling drug delivery systems with emphasis on formulation strategies, gelation mechanisms, administration routes, and therapeutic benefits. It also seeks to understand the role of different polymers in achieving optimal gelation and drug release profiles. Additionally, the review aims to identify current research gaps and highlight potential areas for future development and clinical translation.
View Article and Find Full Text PDFOphthalmic Plast Reconstr Surg
September 2025
Montefiore Medical Center, Department of Ophthalmology & Visual Sciences, Albert Einstein College of Medicine, Bronx.