Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Aconitine, a common and main toxic component of , is toxic to the central nervous system. However, the mechanism of aconitine neurotoxicity is not yet clear. In this work, we had the hypothesis that excitatory amino acids can trigger excitotoxicity as a pointcut to explore the mechanism of neurotoxicity induced by aconitine. HT22 cells were simulated by aconitine and the changes of target cell metabolites were real-time online investigated based on a microfluidic chip-mass spectrometry system. Meanwhile, to confirm the metabolic mechanism of aconitine toxicity on HT22 cells, the levels of lactate dehydrogenase, intracellular Ca, reactive oxygen species, glutathione and superoxide dismutase, and ratio of Bax/Bcl-2 protein were detected by molecular biotechnology. Integration of the detected results revealed that neurotoxicity induced by aconitine was associated with the process of excitotoxicity caused by glutamic acid and aspartic acid, which was followed by the accumulation of lactic acid and reduction of glucose. The surge of extracellular glutamic acid could further lead to a series of cascade reactions including intracellular Ca overload and oxidative stress, and eventually result in cell apoptosis. In general, we illustrated a new mechanism of aconitine neurotoxicity and presented a novel analysis strategy that real-time online monitoring of cell metabolites can provide a new approach to mechanism analysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9937797 | PMC |
http://dx.doi.org/10.1016/j.jpha.2022.11.007 | DOI Listing |