98%
921
2 minutes
20
The phylotranscriptomic analysis of development in several species revealed the expression of older and more conserved genes in midembryonic stages and younger and more divergent genes in early and late embryonic stages, which supported the hourglass mode of development. However, previous work only studied the transcriptome age of whole embryos or embryonic sublineages, leaving the cellular basis of the hourglass pattern and the variation of transcriptome ages among cell types unexplored. By analyzing both bulk and single-cell transcriptomic data, we studied the transcriptome age of the nematode throughout development. Using the bulk RNA-seq data, we identified the morphogenesis phase in midembryonic development as the phylotypic stage with the oldest transcriptome and confirmed the results using whole-embryo transcriptome assembled from single-cell RNA-seq data. The variation in transcriptome ages among individual cell types remained small in early and midembryonic development and grew bigger in late embryonic and larval stages as cells and tissues differentiate. Lineages that give rise to certain tissues (e.g., hypodermis and some neurons) but not all recapitulated the hourglass pattern across development at the single-cell transcriptome level. Further analysis of the variation in transcriptome ages among the 128 neuron types in nervous system found that a group of chemosensory neurons and their downstream interneurons expressed very young transcriptomes and may contribute to adaptation in recent evolution. Finally, the variation in transcriptome age among the neuron types, as well as the age of their cell fate regulators, led us to hypothesize the evolutionary history of some neuron types.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9992843 | PMC |
http://dx.doi.org/10.1073/pnas.2216351120 | DOI Listing |
PLoS One
September 2025
Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Vienna, Austria.
Advanced glycation end products (AGEs) and reactive intermediates, such as methylglyoxal, are formed during thermal processing of foods and have been implicated in the pathogenesis of a series of chronic inflammatory diseases. AGEs are thought to directly interact with the intestinal epithelium upon ingestion of thermally processed foods, but their effects on intestinal epithelial cells are poorly understood. This study investigated transcriptomic changes in human intestinal epithelial FHs 74 Int cells after exposure to AGE-modified human serum proteins (AGE-HS), S100A12, a known RAGE ligand, and unmodified human serum proteins (HS).
View Article and Find Full Text PDFBreast J
September 2025
University of Hawai'i Cancer Center, Honolulu, Hawaii, USA.
The Oncotype DX test is standardly used for patients with early-stage, hormone-receptor-positive, HER2-negative breast cancers to determine the benefit from chemotherapy and the likelihood of distant recurrence. The relationship between Oncotype DX recurrence scores and race/ethnicity is still being studied. This retrospective study aims to evaluate the relationship between Oncotype DX recurrence scores, race/ethnicity, and clinicopathological factors and to support the applicability of the Oncotype DX test for a diverse breast cancer population of Hawaii.
View Article and Find Full Text PDFJID Innov
November 2025
Department of Dermatology, Graduate School of Medicine, Osaka University, Suita, Japan.
Previous studies have revealed that skin T cells accumulate and maintain immune responses in the elderly. However, we questioned why these functional T cells fail to recognize and eliminate malignant cells, making elderly skin more prone to developing malignant tumors. To address this question, we examined the overall skin microenvironment in aging using the Nanostring nCounter system and 10x Xenium digital spatial RNA sequencing.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
The Third Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Heping Road, Linghe District, Jinzhou, City, Liaoning Province, 121000, PR China. Electronic address:
We explored the role of Polygonatum Rhizoma polysaccharide (PRP) in delaying aging and improving Alzheimer's disease (AD) and revealed its potential molecular mechanism. Through chemical characterizations to clarify the physicochemical properties of PRP, it was found that PRP mainly consists of mannose, glucose, galactose, and arabinose, with molecular weights ranging from 7.4 × 10 to 9.
View Article and Find Full Text PDFJMIR Res Protoc
September 2025
Department of Medical Oncology, Early Phase Unit, Georges-François Leclerc Centre, Dijon, France.
Background: Sarcomas are rare cancer with a heterogeneous group of tumors. They affect both genders across all age groups and present significant heterogeneity, with more than 70 histological subtypes. Despite tailored treatments, the high metastatic potential of sarcomas remains a major factor in poor patient survival, as metastasis is often the leading cause of death.
View Article and Find Full Text PDF