Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Biomagnetic monitoring increasingly is applied to assess particulate matter (PM) concentrations, mainly using plant leaves sampled in small geographical area and from a limited number of species. Here, the potential of magnetic analysis of urban tree trunk bark to discriminate between PM exposure levels was evaluated and bark magnetic variation was investigated at different spatial scales. Trunk bark was sampled from 684 urban trees of 39 genera in 173 urban green areas across six European cities. Samples were analysed magnetically for the Saturation isothermal remanent magnetisation (SIRM). The bark SIRM reflected well the PM exposure level at city and local scale, as the bark SIRM (i) differed between the cities in accordance with the mean atmospheric PM concentrations and (ii) increased with the cover of roads and industrial area around the trees. Furthermore, with increasing tree circumferences, the SIRM values increased, as a reflection of a tree age effect related to PM accumulation over time. Moreover, bark SIRM was higher at the side of the trunk facing the prevailing wind direction. Significant relationships between SIRM of different genera validate the possibility to combine bark SIRM from different genera to improve sampling resolution and coverage in biomagnetic studies. Thus, the SIRM signal of trunk bark from urban trees is a reliable proxy for atmospheric coarse to fine PM exposure in areas dominated by one PM source, as long as variation caused by genus, circumference and trunk side is taken into account.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-023-25397-8DOI Listing

Publication Analysis

Top Keywords

trunk bark
16
bark sirm
16
urban trees
12
bark
9
signal trunk
8
bark urban
8
particulate matter
8
european cities
8
sirm
8
sirm genera
8

Similar Publications

Discarded sericultural mulberry branch based triple layer composite phase change material with lignin enhanced thermal management capability.

Int J Biol Macromol

September 2025

Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China. Electronic address:

With the exhaustion of fossil fuels, prior phase change materials are characterized by such drawbacks as poor thermal conductivity, weak shape stability, and high costs. Therefore, the preparation of phase change materials with brilliant thermal-insulating properties, high thermal conductivity, and leakage-free properties has emerged as a crucial research focus. Herein, a sericultural mulberry branch-derived (SMB) composite phase change material was prepared by deep eutectic solvent pretreated SMB and vacuum-assisted impregnated paraffin wax with cupric oxide (CuO).

View Article and Find Full Text PDF

Depression is a highly prevalent neuropsychiatric disorder globally, and its increasing incidence is thought to be mediated by the growing exposure to stressful life events and conditions. is widely used in traditional medicine to treat fever, pain, epilepsy, and depression. This study aimed at evaluating the antidepressant effect of aqueous extract (CF) using the chronic physical restriction stress (CRS) model on male and female rats.

View Article and Find Full Text PDF

Non-structural carbohydrate storage strategy in trunk tissues of different wood porosity species in warm temperate zone.

Ying Yong Sheng Tai Xue Bao

August 2025

Key Laboratory of Sustainable Forest Ecosystem Management of the Ministry of Education, School of Ecology, Northeast Forestry University, Harbin 150040, China.

Wood porosity types (non-porous, diffuse-porous, and ring-porous) reflect evolutionary gradients cha-racteristics of xylem anatomy of temperate tree species. The mechanisms linking porosity type to non-structural carbohydrate (NSC) storage strategy in stem tissues remain unclear. We conducted an experiment with 77 warm-tempe-rate tree species in the Baotianman National Nature Reserve, Henan Province.

View Article and Find Full Text PDF

Trees in urban areas significantly affect the integrated ecohydrology of the water-forest-soil system. Their presence can improve the water cycle by increasing evaporation, reducing surface runoff, and enhancing water infiltration through roots in anthropized (human-altered) areas. Therefore, understanding vegetation traits and their effects on rainfall interception is important in urban hydrology.

View Article and Find Full Text PDF