98%
921
2 minutes
20
Introduction: Huntington's disease (HD) is a rare neurodegenerative disease characterized by cognitive, behavioral and motor symptoms that progressively worsen with time. Cognitive and behavioral signs of HD are generally present in the years prior to a diagnosis; however, manifest HD is typically assessed by genetic confirmation and/or the presence of unequivocal motor symptoms. Nevertheless, there is a large variation in symptom severity and rate of progression among individuals with HD.
Methods: In this retrospective study, longitudinal natural history of disease progression was modeled in individuals with manifest HD from the global, observational Enroll-HD study (NCT01574053). Unsupervised machine learning (k-means; km3d) was used to jointly model clinical and functional disease measures simultaneously over time, based on one-dimensional clustering concordance such that individuals with manifest HD ( = 4,961) were grouped into three clusters: rapid (Cluster A; 25.3%), moderate (Cluster B; 45.5%) and slow (Cluster C; 29.2%) progressors. Features that were considered predictive of disease trajectory were then identified using a supervised machine learning method (XGBoost).
Results: The cytosine adenine guanine-age product score (a product of age and polyglutamine repeat length) at enrollment was the top predicting feature for cluster assignment, followed by years since symptom onset, medical history of apathy, body mass index at enrollment and age at enrollment.
Conclusions: These results are useful for understanding factors that affect the global rate of decline in HD. Further work is needed to develop prognostic models of HD progression as these could help clinicians with individualized clinical care planning and disease management.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9923354 | PMC |
http://dx.doi.org/10.3389/fneur.2022.1034269 | DOI Listing |
Knee Surg Relat Res
September 2025
Florida Orthopaedic Institute, Gainesville, FL, 32607, USA.
Background: A clear understanding of minimal clinically important difference (MCID) and substantial clinical benefit (SCB) is essential for effectively implementing patient-reported outcome measurements (PROMs) as a performance measure for total knee arthroplasty (TKA). Since not achieving MCID and SCB may reflect suboptimal surgical benefit, the primary aim of this study was to use machine learning to predict patients who may not achieve the threshold-based outcomes (i.e.
View Article and Find Full Text PDFJ Orthop Res
September 2025
Department of Kinesiology, College of Health Sciences, University of Rhode Island, Kingston, Rhode Island, USA.
Arthroplasty surgery is a common and successful end-stage intervention for advanced osteoarthritis. Yet, postoperative outcomes vary significantly among patients, leading to a plethora of measures and associated measurement approaches to monitor patient outcomes. Traditional approaches rely heavily on patient-reported outcome measures (PROMs), which are widely used, but often lack sensitivity to detect function changes (e.
View Article and Find Full Text PDFBehav Res Methods
September 2025
Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Cybernetics, Prague, Czech Republic.
Automatic markerless estimation of infant posture and motion from ordinary videos carries great potential for movement studies "in the wild", facilitating understanding of motor development and massively increasing the chances of early diagnosis of disorders. There has been a rapid development of human pose estimation methods in computer vision, thanks to advances in deep learning and machine learning. However, these methods are trained on datasets that feature adults in different contexts.
View Article and Find Full Text PDFGeroscience
September 2025
Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
This study aims to investigate the predictive value of combined phenotypic age and phenotypic age acceleration (PhenoAgeAccel) for benign prostatic hyperplasia (BPH) and develop a machine learning-based risk prediction model to inform precision prevention and clinical management strategies. The study analyzed data from 784 male participants in the US National Health and Nutrition Examination Survey (NHANES, 2001-2008). Phenotypic age was derived from chronological age and nine serum biomarkers.
View Article and Find Full Text PDFBariatric surgery is an effective treatment for morbid obesity, but patient outcomes differ greatly because of a variety of phenotypes, comorbidities, and postoperative adherence. In bariatric care, artificial intelligence (AI) and machine learning (ML) are becoming revolutionary tools because traditional predictive models based on BMI and demographic variables are unable to account for these complexities. To put it simply, AI is a branch of computer science that enables machines to perform tasks that typically require human intelligence.
View Article and Find Full Text PDF