98%
921
2 minutes
20
Background: The use of apical views focused on the left atrium (LA) has improved the accuracy of LA volume evaluation by two-dimensional (2D) echocardiography. However, routine cardiovascular magnetic resonance (CMR) evaluation of LA volumes still uses standard 2- and 4-chamber cine images focused on the left ventricle (LV). To investigate the potential of LA-focused CMR cine images, we compared LA maximuml (LAVmax) and minimum (LAVmin) volumes, and emptying fraction (LAEF), calculated on both standard and LA-focused long-axis cine images, with LA volumes and LAEF obtained by short-axis cine stacks covering the LA. LA strain was also calculated and compared between standard and LA-focused images.
Methods: LA volumes and LAEF were obtained from 108 consecutive patients by applying the biplane area-length algorithm to both standard and LA-focused 2- and 4-chamber cine images. Manual segmentation of a short-axis cine stack covering the LA was used as the reference method. In addition, LA strain reservoir (εs), conduit (εe) and booster pump (εa) were calculated using CMR feature-tracking.
Results: Compared to the reference method, the standard approach significantly underestimated LA volumes (LAVmax: bias - 13 ml; LOA = + 11, - 37 ml; LAVmax i: bias - 7 ml/m; LOA = + 7, - 21 ml/m; LAVmin; bias - 10 ml, LOA: + 9, - 28 ml; LAVmin i: bias - 5 ml/m, LOA: + 5, - 16 ml/m), and overestimated LA-EF (bias 5%, LOA: + 23, - 14%). Conversely, LA volumes (LAVmax: bias 0 ml; LOA: + 10, - 10 ml; LAVmax i: bias 0 ml/m; LOA: + 5, - 6 ml/m; LAVmin: bias - 2 ml; LOA: + 7, - 10 ml; LAVmin i: bias - 1 ml/m; LOA: + 3, - 5 ml/m) and LAEF (bias 2%, LOA: + 11, - 7%) by LA-focused cine images were similar to those measured using the reference method. LA volumes by LA-focused images were obtained faster than using the reference method (1.2 vs 4.5 min, p < 0.001). LA strain (εs: bias 7%, LOA = 25, - 11%; εe: bias 4%, LOA = 15, - 8%; εa: bias 3%, LOA = 14, - 8%) was significantly higher in standard vs. LA-focused images (p < 0.001).
Conclusion: LA volumes and LAEF measured using dedicated LA-focused long-axis cine images are more accurate than using standard LV-focused cine images. Moreover, LA strain is significantly lower in LA-focused vs. standard images.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9933380 | PMC |
http://dx.doi.org/10.1186/s12968-022-00905-w | DOI Listing |
Open Heart
September 2025
Department of Cardiology, Angiology and Internal Intensive Care Medicine, RWTH Aachen University, Aachen, Germany.
Background: Acute myocarditis is a potentially life-threatening cardiac condition and immediate assessment of this disease is imminent. While laboratory tests, electrocardiography or transthoracic echocardiography can provide indirect signs for the presence of acute myocarditis, cardiac magnetic resonance (CMR) imaging enables direct visualisation of myocardial inflammation and confirms the diagnosis.Since there is limited accessibility to CMR, the goal of this study was to evaluate the sensitivity and specificity of an elevation of established biomarkers for the diagnosis of myocarditis and to define a specific rule-out threshold for deferring CMR.
View Article and Find Full Text PDFJ Cardiovasc Magn Reson
September 2025
Department of Magnetic Resonance Imaging, Fuwai Hospital and National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100037, China; Key Laboratory of Cardiovascular Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China.
Background: Conventional cardiac magnetic resonance (CMR) examinations require patients to repeatedly hold their breath, which can reduce examination efficiency and pose challenges for patients unable to do so. This study aimed to demonstrate the feasibility and effectiveness of a full free-breathing CMR protocol in clinical practice.
Methods: Patients prospectively enrolled in this study underwent a full free-breathing CMR exam on a 3T scanner between June 1 and June 30, 2024.
J Magn Reson Imaging
September 2025
Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan.
Background: Automated cardiac MR segmentation enables accurate and reproducible ventricular function assessment in Tetralogy of Fallot (ToF), whereas manual segmentation remains time-consuming and variable.
Purpose: To evaluate the deep learning (DL)-based models for automatic left ventricle (LV), right ventricle (RV), and LV myocardium segmentation in ToF, compared with manual reference standard annotations.
Study Type: Retrospective.
Open Heart
September 2025
Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark.
Background: Evidence regarding cardiovascular adaptation to pregnancy in women with pregestational diabetes is limited. Our study aimed to describe left ventricular (LV) remodelling and vascular adaptation to pregnancy in women with type 1 diabetes.
Methods: In this prospective cohort study, three consecutive cardiac MRI scans were conducted on age-matched and BMI-matched pregnant women with pregestational type 1 diabetes and pregnant women without diabetes.
Prog Nucl Magn Reson Spectrosc
September 2025
School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Institute for Intelligent Healthcare Engineering, Santiago, Chile; Institute for Biological and Medical
Cardiovascular magnetic resonance (CMR) imaging is an established non-invasive tool for the assessment of cardiovascular diseases, which are the leading cause of death globally. CMR provides dynamic and static multi-contrast and multi-parametric images, including cine for functional evaluation, contrast-enhanced imaging and parametric mapping for tissue characterization, and MR angiography for the assessment of the aortic, coronary and pulmonary circulation. However, clinical CMR imaging sequences still have some limitations such as the requirement for multiple breath-holds, incomplete spatial coverage, complex planning and acquisition, low scan efficiency and long scan times.
View Article and Find Full Text PDF