Profiling Humoral Immunity After Mixing and Matching COVID-19 Vaccines Using SARS-CoV-2 Variant Protein Microarrays.

Mol Cell Proteomics

Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan; International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan. Electronic a

Published: April 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In November 2022, 68% of the population received at least one dose of COVID-19 vaccines. Owing to the ongoing mutations, especially for the variants of concern (VOCs), it is important to monitor the humoral immune responses after different vaccination strategies. In this study, we developed a SARS-CoV-2 variant protein microarray that contained the spike proteins from the VOCs, e.g., alpha, beta, gamma, delta, and omicron, to quantify the binding antibody and surrogate neutralizing antibody. Plasmas were collected after two doses of matching AZD1222 (AZx2), two doses of matching mRNA-1273 (Mx2), or mixing AZD1222 and mRNA-1273 (AZ+M). The results showed a significant decrease of surrogate neutralizing antibodies against the receptor-binding domain in all VOCs in AZx2 and Mx2 but not AZ+M. A similar but minor reduction pattern of surrogate neutralizing antibodies against the extracellular domain was observed. While Mx2 exhibited a higher surrogate neutralizing level against all VOCs compared with AZx2, AZ+M showed an even higher surrogate neutralizing level in gamma and omicron compared with Mx2. It is worth noting that the binding antibody displayed a low correlation to the surrogate neutralizing antibody (R-square 0.130-0.382). This study delivers insights into humoral immunities, SARS-CoV-2 mutations, and mixing and matching vaccine strategies, which may provide a more effective vaccine strategy especially in preventing omicron.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9922205PMC
http://dx.doi.org/10.1016/j.mcpro.2023.100507DOI Listing

Publication Analysis

Top Keywords

surrogate neutralizing
24
mixing matching
8
covid-19 vaccines
8
sars-cov-2 variant
8
variant protein
8
binding antibody
8
neutralizing antibody
8
doses matching
8
neutralizing antibodies
8
higher surrogate
8

Similar Publications

Removal and inactivation of human coronavirus surrogates from hard and soft surfaces using disinfectant wipes.

Appl Environ Microbiol

September 2025

Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, South Carolina, USA.

Disinfectant wipes are widely used to reduce microbial contamination on surfaces, yet there is limited information on how viruses are physically removed or chemically inactivated during wiping. This study aimed to address this gap by comparing the contributions of physical removal and chemical inactivation to overall disinfection efficacy. Glass and vinyl coupons were contaminated with SARS-CoV-2 surrogates, bovine coronavirus (BCoV), or human coronavirus OC43, at an initial titer of 5-6 log TCID/surface with 5% soil load.

View Article and Find Full Text PDF

Spillover of SARS-CoV-2 to Domestic Dogs in COVID-19-Positive Households: A One Health Surveillance Study.

Virus Res

September 2025

Pennsylvania Department of Agriculture, Pennsylvania Veterinary Laboratory, Harrisburg, PA 17110, USA. Electronic address:

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is capable of infecting multiple species through human-to-animal spillover. Human to animal spillovers have been documented both in domestic and wild animal species. Due to close contact in shared households, pet dogs may be at increased risk for contracting the SARS-CoV-2 virus from infected individuals in the same household.

View Article and Find Full Text PDF

In vaccine trials with long-term participant follow-up, it is of great importance to identify surrogate markers that accurately infer long-term immune responses. These markers offer practical advantages such as providing early, indirect evidence of vaccine efficacy, and can accelerate vaccine development while identifying potential biomarkers. High-throughput technologies such as RNA-sequencing have emerged as promising tools for understanding complex biological systems and informing new treatment strategies.

View Article and Find Full Text PDF

The conjugation of proteins to the outer membranes of liposomes is a standard procedure used in bioanalytical and drug delivery approaches. Herein, we describe the development of a liposome-based surrogate assay for the quantification of SARS-CoV-2 neutralizing antibodies. Taking into consideration differences in amino acid sequences within the receptor-binding domain (RBD) of SARS-CoV-2 Spike proteins derived from five selected variants of concern (VoC), we studied the impact of coupling chemistries on physicochemical properties and antigenicity.

View Article and Find Full Text PDF

Background: Immune induction under B-cell depletion is complex and far from being fully understood.

Methods: We investigated clinical and immunological responses after dual homologous mRNA vaccination with BNT162b2 and after booster vaccination or infection in 14 B-cell depleted patients with inflammatory central nervous system disease in comparison to 28 healthy controls. Spike-specific IgG were determined using ELISA and neutralizing activity by surrogate assay.

View Article and Find Full Text PDF