Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The interface between the Pt(111) surface and several MeF/HClO (Me = Li, Na, or Cs) aqueous electrolytes is investigated by means of cyclic voltammetry and laser-induced temperature jump experiments. Results point out that the effect of the electrolyte on the interfacial water structure is different depending on the nature of the metal alkali cation, with the values of the potential of maximum entropy (pme) following the order pme (Li) < pme (Na) < pme (Cs). In addition, the hydrogen peroxide reduction reaction is studied under these conditions. This reaction is inhibited at low potentials as a consequence of the build up of negative charges on the electrode surface. The potential where this inhibition takes place ( ) follows the same trend as the pme. These results evidence that the activity of an electrocatalytic reaction can depend to great extent on the structure of the interfacial water adlayer and that the latter can be modulated by the nature of the alkali metal cation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9836069 | PMC |
http://dx.doi.org/10.1021/acsmeasuresciau.1c00004 | DOI Listing |