Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

While wild pollinators play a key role in global food production, their assessment is currently missing from the most commonly used environmental impact assessment method, Life Cycle Assessment (LCA). This is mainly due to constraints in data availability and compatibility with LCA inventories. To target this gap, relative pollinator abundance estimates were obtained with the use of a Delphi assessment, during which 25 experts, covering 16 nationalities and 45 countries of expertise, provided scores for low, typical, and high expected abundance associated with 24 land use categories. Based on these estimates, this study presents a set of globally generic characterization factors (CFs) that allows translating land use into relative impacts to wild pollinator abundance. The associated uncertainty of the CFs is presented along with an illustrative case to demonstrate the applicability in LCA studies. The CFs based on estimates that reached consensus during the Delphi assessment are recommended as readily applicable and allow key differences among land use types to be distinguished. The resulting CFs are proposed as the first step for incorporating pollinator impacts in LCA studies, exemplifying the use of expert elicitation methods as a useful tool to fill data gaps that constrain the characterization of key environmental impacts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9979645PMC
http://dx.doi.org/10.1021/acs.est.2c05311DOI Listing

Publication Analysis

Top Keywords

pollinator abundance
12
characterization factors
8
life cycle
8
cycle assessment
8
delphi assessment
8
abundance associated
8
based estimates
8
lca studies
8
assessment
6
factors assess
4

Similar Publications

Habitat and land-use intensity shape moth community structure across temperate forest and grassland.

J Anim Ecol

September 2025

Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, School of Life Sciences, Technische Universität München, Freising, Germany.

Land-use change and intensification are major drivers of biodiversity loss, yet their effects on diversity have usually been studied within a single habitat type or land-use category, limiting our understanding of cross-habitat patterns. Moths, a species-rich taxon worldwide, represent a significant portion of the biodiversity in both temperate forests and grasslands, functioning as pollinators and herbivores. While increasing land-use intensity (LUI) in both habitats is expected to negatively impact moth assemblages, the strength of this effect remains uncertain.

View Article and Find Full Text PDF

Long-term decline in montane insects under warming summers.

Ecology

September 2025

Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA.

Widespread declines in the abundance of insects portend ill-fated futures for their host ecosystems, all of which require their services to function. For many such reports, human activities have directly altered the land or water of these ecosystems, raising questions about how insects in less impacted environments are faring. I quantified the abundance of flying insects during 15 seasons spanning 2004-2024 on a relatively unscathed, subalpine meadow in Colorado, where weather data have been recorded for 38 years.

View Article and Find Full Text PDF

Extrafloral nectaries (EFNs) are specialized plant glands that secrete nectar but are not related to pollination. Several ants feed on EFNs and, in exchange, they often attack herbivores, reducing the consumption of leaf tissue and floral parts, and enhancing plant performance. Although most empirical studies and reviews have demonstrated that ant visitation benefits EFN-bearing plants, many others have failed to show ants as protective partners.

View Article and Find Full Text PDF

Anthropogenic environments are increasingly recognised for their potential to support pollinator diversity, especially through the strategic selection of ornamental plant species. This study investigated the ecological role of (formerly ) in supporting solitary bees, particularly species of the genus , within urban green spaces in Milan (Italy). Field observations were conducted in both urban and rural sites to assess pollinator visitation rates, bee abundance, and plant traits relevant to nesting and foraging.

View Article and Find Full Text PDF

Pesticide use has become widespread around the globe, and mounting evidence has demonstrated health impacts on non-target insects such as bees. However, less is known about whether the presence of these chemicals in plant tissue can alter interactions between plants, pollinators, and floral microbes. Here we asked if the presence of an insecticide and fungicide alters pollinator visitation, the abundance of floral fungi, and seed set.

View Article and Find Full Text PDF