A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Distributional Validation of Precipitation Data Products with Spatially Varying Mixture Models. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The high mountain regions of Asia contain more glacial ice than anywhere on the planet outside of the polar regions. Because of the large population living in the Indus watershed region who are reliant on melt from these glaciers for fresh water, understanding the factors that affect glacial melt along with the impacts of climate change on the region is important for managing these natural resources. While there are multiple climate data products (e.g., reanalysis and global climate models) available to study the impact of climate change on this region, each product will have a different amount of skill in projecting a given climate variable, such as precipitation. In this research, we develop a spatially varying mixture model to compare the distribution of precipitation in the High Mountain Asia region as produced by climate models with the corresponding distribution from in situ observations from the Asian Precipitation-Highly Resolved Observational Data Integration Towards Evaluation (APHRODITE) data product. Parameter estimation is carried out via a computationally efficient Markov chain Monte Carlo algorithm. Each of the estimated climate distributions from each climate data product is then validated against APHRODITE using a spatially varying Kullback-Leibler divergence measure. Supplementary materials accompanying this paper appear online. Supplementary materials for this article are available at 10.1007/s13253-022-00515-0.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9908693PMC
http://dx.doi.org/10.1007/s13253-022-00515-0DOI Listing

Publication Analysis

Top Keywords

spatially varying
12
data products
8
varying mixture
8
high mountain
8
climate
8
climate change
8
change region
8
climate data
8
climate models
8
data product
8

Similar Publications