98%
921
2 minutes
20
Objectives: The pathogenesis of pancreas cancer (PDAC) remains poorly understood, hindering efforts to develop a more effective therapy for PDAC. Recent discoveries show the aryl hydrocarbon receptor (AHR) plays a crucial role in the pathogenesis of several cancers, and can be targeted for therapeutic effect. However, its involvement in PDAC remains unclear. Therefore, we evaluated the role of AHR in the development of PDAC
Methods: We created a global AHR-null, mutant -driven PDAC mouse model (AKC) and evaluated the changes in PDAC precursor lesion formation (Pan-IN 1, 2, and 3) and associated fibro-inflammation between KC and AKC at 5 months of age. We then examined the changes in the immune microenvironment followed by single-cell RNA-sequencing analysis to evaluate concomitant transcriptomic changes.
Results: We found a significant increase in PanIN-1 lesion formation and PanIN-1 associated fibro-inflammatory infiltrate in AKC vs KC mice. This was associated with significant changes in the adaptive immune system, particularly a decrease in the CD4+/CD8+ T-cell ratio, as well as a decrease in the T-regulatory/Th17 T-cell ratio suggesting unregulated inflammation.
Conclusion: These findings show the loss of AHR results in heightened -induced PanIN formation, through modulation of immune cells within the pancreatic tumor microenvironment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9915668 | PMC |
http://dx.doi.org/10.1101/2023.02.01.526625 | DOI Listing |
Chem Biol Interact
September 2025
Department of Systems Medicine. School of Medicine. University of Dundee, Ninewells Hospital, Dundee, DD1 9SY, UK.
Humans are exposed to mixtures of chemical pollutants from various environmental sources at all stages of life. Understanding how these compounds are causally linked to population health effects is challenging because of the ethical limitations on studying controlled human exposures and the complexity of the many potential molecular mechanisms involved. We hypothesized that studies using a combination of in vivo murine stress reporter models together with non-targeted global transcriptome analysis will define the toxic mechanisms of complex chemical mixtures in a physiological context.
View Article and Find Full Text PDFImmunity
September 2025
Institute for Immunology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China. Electronic address:
The persistence of tissue-specific chronic inflammation results from an interplay of genetic and environmental factors. How these factors coordinate to sustain pathology in chronic conditions like psoriasis is not well resolved. Using a Card14 murine model of psoriasis, we found that spontaneous skin inflammation reshaped not only the immune architecture in the skin but also systemic metabolites.
View Article and Find Full Text PDFPhytomedicine
September 2025
College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China. Electronic address:
Background: The pathogenesis of metabolic dysfunction-associated fatty liver disease (MAFLD) involves gut microbiota dysbiosis. This study investigated pseudolaric acid B (PAB), a diterpenoid from Pseudolarix kaempferi, for its potential to ameliorate MAFLD via microbiota-metabolite-host signaling pathways.
Method: We evaluated the effects of PAB on MAFLD in high-fat diet (HFD)-fed mice.
Beilstein J Org Chem
August 2025
Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.
Lipophilic yeasts of the genus are commensal fungi that constitute the normal skin microbiota but may become pathogenic. These fungi, especially , convert tryptophan into various alkaloid indoles such as malassezione, which may serve as virulence factors. To facilitate testing of malassezione as an aryl hydrocarbon receptor agonist and potential glucokinase activator, we developed a convenient synthetic route from commercially available indole-3-acetic acid.
View Article and Find Full Text PDFInt J Pharm
September 2025
Department of Pharmaceutical Sciences, Via del Liceo 1, 06123 Perugia, Italy. Electronic address:
Indole-3-carboxaldehyde (I3A), a microbial tryptophan metabolite, exhibits significant immunomodulatory activity at the host-microbial interface. However, its rapid transformation into metabolites like indole-3-carboxylic acid (I3CA) raises questions about their therapeutic potential. This study aimed to evaluate the pharmacological contributions of I3CA through the development of a proper delivery strategy.
View Article and Find Full Text PDF