A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Medical record data-enabled machine learning can enhance prediction of left atrial appendage thrombosis in nonvalvular atrial fibrillation. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: As a major complication of non-valvular atrial fibrillation (NVAF), left atrial appendage (LAA) thrombosis is associated with cerebral ischemic strokes, as well as high morbidity. Due to insufficient incorporation of risk factors, most current scoring methods are limited to the analysis of relationships between clinical characteristics and LAA thrombosis rather than detecting potential risk. Therefore, this study proposes a clinical data-driven machine learning method to predict LAA thrombosis of NVAF.

Methods: Patients with NVAF from January 2014 to June 2022 were enrolled from Southwest Hospital. We selected 40 variables for analysis, including demographic data, medical history records, laboratory results, and the structure of LAA. Three machine learning algorithms were adopted to construct classifiers for the prediction of LAA thrombosis risk. The most important variables related to LAA thrombosis and their influences were recognized by SHapley Addictive exPlanations method. In addition, we compared our model with CHADS2 and CHADS2-VASc scoring methods.

Results: A total of 713 participants were recruited, including 127 patients with LAA thrombosis and 586 patients with no obvious thrombosis. The consensus models based on Random Forest and eXtreme Gradient Boosting LAA thrombosis prediction (RXTP) achieved the best accuracy of 0.865, significantly outperforming CHADS2 score and CHA2DS2-VASc score (0.757 and 0.754, respectively). The SHAP results showed that B-type natriuretic peptide, left atrial appendage width, C-reactive protein, Fibrinogen and estimated glomerular filtration rate are closely related to the risk of LAA thrombosis in nonvalvular atrial fibrillation.

Conclusions: The RXTP-NVAF model is the most effective model with the greatest ROC value and recall rate. The summarized risk factors obtained from SHAP enable the optimization of the treatment strategy, thereby preventing thromboembolism events and the occurrence of cardiogenic ischemic stroke.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.thromres.2023.01.001DOI Listing

Publication Analysis

Top Keywords

laa thrombosis
32
machine learning
12
left atrial
12
atrial appendage
12
thrombosis
10
laa
9
thrombosis nonvalvular
8
nonvalvular atrial
8
atrial fibrillation
8
risk factors
8

Similar Publications