Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Correction for 'Discovering atomistic pathways for supply of metal atoms from methyl-based precursors to graphene surface' by Davide G. Sangiovanni , , 2023, , 829-837, https://doi.org/10.1039/D2CP04091C.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cp90046kDOI Listing

Publication Analysis

Top Keywords

atomistic pathways
8
pathways supply
8
supply metal
8
metal atoms
8
atoms methyl-based
8
methyl-based precursors
8
precursors graphene
8
correction discovering
4
discovering atomistic
4
graphene surface
4

Similar Publications

Passivating detrimental defects is essential for improving perovskite solar cells (PSCs) performance. While hydrogen interstitials are often considered harmful, their role in defect passivation remains unclear. Using nonadiabatic molecular dynamics, we uncover a self-passivation mechanism between hydrogen (H) and bromine (Br) interstitials in all-inorganic CsPbBr perovskites.

View Article and Find Full Text PDF

Voltage-dependence gating of ion channels underlies numerous physiological and pathophysiological processes, and disruption of normal voltage gating is the cause of many channelopathies. Here, long timescale atomistic simulations were performed to directly probe voltage-induced gating transitions of the big potassium (BK) channels, where the voltage sensor domain (VSD) movement has been suggested to be distinct from that of canonical Kv channels but remains poorly understood. Using a Core-MT construct without the gating ring, multiple voltage activation transitions were observed at 750 mV, allowing detailed analysis of the activated state of BK VSD and key mechanistic features.

View Article and Find Full Text PDF

Pentameric ligand-gated ion channels control synaptic neurotransmission via an allosteric mechanism, whereby agonist binding induces global protein conformational changes that open an ion-conducting pore. For the proton-activated bacterial () ligand-gated ion channel (GLIC), high-resolution structures are available in multiple conformational states. We used a library of atomistic molecular dynamics (MD) simulations to study conformational changes and to perform dynamic network analysis to elucidate the communication pathways underlying the gating process.

View Article and Find Full Text PDF

Extreme ultraviolet (EUV) lithography has revolutionized the high-volume manufacturing of nanoscale components. The use of EUV light leads to ionization-driven chemistry in the imaging materials of lithography, the photoresists. The complex interplay of ionization, generation of primary/secondary electrons, and the subsequent chemical mechanisms that lead to image formation in photoresists has been notoriously difficult to study.

View Article and Find Full Text PDF

Cotranslational protein folding follows a distinct pathway shaped by the vectorial emergence of the peptide and spatial constraints of the ribosome exit tunnel. Variations in translation rhythm can cause misfolding linked to disease; however, predicting cotranslational folding pathways remains challenging. Here, we computationally predict and experimentally validate a vectorial hierarchy of folding resolved at the atomistic level, where early intermediates are stabilized through non-native hydrophobic interactions before rearranging into the native-like fold.

View Article and Find Full Text PDF