98%
921
2 minutes
20
Understanding historical range shifts and population size variation provides an important context for interpreting contemporary genetic diversity. Methods to predict changes in species distributions and model changes in effective population size ( ) using whole genomes make it feasible to examine how temporal dynamics influence diversity across populations. We investigate variation and climate-associated range shifts to examine the origins of a previously observed latitudinal heterozygosity gradient in the bumble bee Cresson (Hymenoptera: Apidae: Latreille) in western North America. We analyze whole genomes from a latitude-elevation cline using sequentially Markovian coalescent models of through time to test whether relatively low diversity in southern high-elevation populations is a result of long-term differences in . We use Maxent models of the species range over the last 130,000 years to evaluate range shifts and stability. fluctuates with climate across populations, but more genetically diverse northern populations have maintained greater over the late Pleistocene and experienced larger expansions with climatically favorable time periods. Northern populations also experienced larger bottlenecks during the last glacial period, which matched the loss of range area near these sites; however, bottlenecks were not sufficient to erode diversity maintained during periods of large . A genome sampled from an island population indicated a severe postglacial bottleneck, indicating that large recent postglacial declines are detectable if they have occurred. Genetic diversity was not related to niche stability or glacial-period bottleneck size. Instead, spatial expansions and increased connectivity during favorable climates likely maintain diversity in the north while restriction to high elevations maintains relatively low diversity despite greater stability in southern regions. Results suggest genetic diversity gradients reflect long-term differences in dynamics and also emphasize the unique effects of isolation on insular habitats for bumble bees. Patterns are discussed in the context of conservation under climate change.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9889631 | PMC |
http://dx.doi.org/10.1002/ece3.9778 | DOI Listing |
JAMA Netw Open
September 2025
Department of Epidemiology, University of Texas Health Science Center at Houston School of Public Health, Houston.
Importance: Trisomy 13 (T13) and trisomy 18 (T18) are chromosomal abnormalities with high mortality rates in the first year of life. Understanding differences in long-term survival between children with full vs mosaic or partial trisomy is crucial for prognosis and health care planning.
Objective: To examine the differences in 10-year survival between children with full T13 and T18 vs those with mosaic or partial trisomy.
Cell Mol Biol (Noisy-le-grand)
September 2025
Department of Biology, College of Education for Pure Sciences, University of Kerbala, Kerbala, Iraq.
Gastric cancer is one of the causes of deaths related to cancer across the globe and both genetic and environmental factors are the most prominent. Causes of its pathogenesis. This paper researches the expression of the C-FOS gene.
View Article and Find Full Text PDFHead Neck Pathol
September 2025
Department of Laboratory Medicine and Pathology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
Myoepithelial carcinoma (MECA) is a malignant neoplasm composed exclusively of myoepithelial cells and accounts for less than 1% of all salivary gland tumors. Its diagnosis is often challenging due to histologic overlaps with benign lesions and its variable morphologic presentation. Although molecular profiling has emerged as a valuable tool in salivary gland tumor classification, the genetic landscape of MECA remains incompletely defined.
View Article and Find Full Text PDFArch Microbiol
September 2025
Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, India.
Salmonella enterica serovar Typhi, the etiological agent of Typhoid fever, remains a critical public health concern associated with high morbidity in many developing countries. The widespread emergence of multidrug-resistant (MDR) Salmonella Typhi strains against the fluoroquinolone group of antibiotics, particularly ciprofloxacin, poses a significant global therapeutic challenge with underlying resistance due to mutations in quinolone-resistance determining region (QRDR) of gyrA gene, encoding DNA gyrase subunit A (GyrA). In pursuit of alternative therapeutic candidates, the present study was designed to evaluate ciprofloxacin analogues against prevalent GyrA mutations (S83F, D87G, and D87N) to overcome fluoroquinolone resistance through machine learning (ML)-based approach.
View Article and Find Full Text PDFPlant Mol Biol
September 2025
Institute of Biological Chemistry, The Washington State University, Pullman, WA, 99164, USA.
Legumes are essential for agriculture and food security. Biotic and abiotic stresses pose significant challenges to legume production, lowering productivity levels. Most legumes must be genetically improved by introducing alleles that give pest and disease resistance, abiotic stress adaptability, and high yield potential.
View Article and Find Full Text PDF