98%
921
2 minutes
20
The non-climacteric octoploid strawberry (Fragaria × ananassa Duchesne ex Rozier) was used as a model to study its regulation during fruit ripening. High performance liquid chromatography electrospray tandem-mass spectrometry (HPLC-ESI-MS/MS) was employed to profile 28 different endogenous phytohormones in strawberry. These include auxins, cytokinins (CKs), abscisic acid (ABA), ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), jasmonates, and phenolic compounds salicylic acid (SA), benzoic acid (BzA) and phenylacetic acid (PAA) together with their various metabolic forms that have remained largely unexplored thus far. ABA, ACC and CK N-(Δ-isopentenyl)adenine (iP) were found to be associated with ripening while ABA catabolites 9-hydroxy-ABA and phaseic acid mimicked the pattern of climacteric decline at the turning phase of strawberry ripening. The content of other CK forms except iP decreased as fruit ripened, as also that of auxins indole-3-acetic acid (IAA) and oxo-IAA, and of jasmonates. Data presented here also suggest that both the transition and progression of strawberry fruit ripening are associated with N-(Δ-isopentenyl)adenosine-5'-monophosphate (iPRMP) → N-(Δ-isopentenyl)adenosine (iPR) → iP as the preferred CK metabolic pathway. In contrast, the ethylene precursor ACC was present at higher levels, with its abundance increasing from the onset of ripening to the red ripe stage. Further investigation of ripening-specific ACC accumulation revealed the presence of a large ACC synthase (ACS) encoding gene family in octoploid strawberry that was previously unknown. Seventeen ACS genes were found differentially expressed in fruit tissues, while six of them showed induced expression during strawberry fruit ripening. These data suggest a possible role(s) of ACC, ABA, and iP in strawberry fruit ripening. These data add new dimension to the existing knowledge of the interplay of different endogenous phytohormones in octoploid strawberry, paving the way for further investigation of their individual role(s) in fruit ripening.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2023.01.031 | DOI Listing |
Front Plant Sci
August 2025
Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States.
Fruit drop, cracking, and advanced ripening prior to fruit harvest can promote significant losses in important apple cultivars such as 'Ambrosia' and 'Fuji' grown in the mid-Atlantic. These losses result from environmental factors, delays in harvest due to the lack of red skin color development, and cultivar-specific characteristics, among others. Aminoethoxyvinylglycine (AVG) and 1-methylcyclopropene (1-MCP) are ethylene-inhibiting plant growth regulators (PGRs) that can alter preharvest fruit drop, cracking, maturity, and quality by impeding ethylene biosynthesis and perception, respectively.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Department of Paper and Packaging Technology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India. Electronic address:
Guar gum (GG), a natural galactomannan polysaccharide derived from Cyamopsis tetragonoloba, is gaining popularity as a biodegradable and environmentally friendly packaging material. With the growing demand for sustainable food packaging, stricter regulations prioritize cost efficiency, consumer safety, and environmental impact. It exhibits strong potential for use in packaging films and coatings, offering barrier properties that slow down fruit ripening and reduce post-harvest quality loss.
View Article and Find Full Text PDFFront Plant Sci
August 2025
College of Horticulture, Shenyang Agricultural University, Shenyang, China.
Introduction: The ripening process of tomato fruits involves many complex changes. The elucidation of the ripening pathways contributes to the reduction of post-harvest losses and improvement of fruit quality. However, much is unknown about how tomato plants precisely synchronize metabolic regulation and fruit maturation.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Department of Horticulture, Michigan State University, East Lansing, MI, United States.
Plant growth regulators (PGRs) include natural and synthetic plant phytohormones and other substances with the capacity to shape one or more aspects of plant growth and development at small concentrations. PGRs are commonly utilized in tree fruit and table grape production to reduce fruit set (thinning) and increase fruit size, coloration, and quality. However, use of PGRs in the production of berry crops, such as blueberry, is less common despite the abundance of production issues and the breadth of PGRs generally registered for fruit crops.
View Article and Find Full Text PDFRSC Adv
August 2025
Faculty of Materials Science and Technology, University of Science Ho Chi Minh City Vietnam
This work aims to construct a nanocomposite coating made from chitosan (CS) and hydrothermally prepared ceria nanoparticles (hCeO NPs), and thoroughly evaluate its influence on extending the lifespan of post-harvest bananas over a 12-day period. The hCeO NPs were characterized to confirm their synthesis before being integrated within the CS matrix. The morphological, structural, mechanical, water-, and UV-barrier properties of nanocomposite coating films were determined.
View Article and Find Full Text PDF