Effect of light fluctuations on photosynthesis and metabolic flux in Synechocystis sp. PCC 6803.

Biotechnol Prog

Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Osaka, Japan.

Published: September 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In nature, photosynthetic organisms are exposed to fluctuating light, and their physiological systems must adapt to this fluctuation. To maintain homeostasis, these organisms have a light fluctuation photoprotective mechanism, which functions in both photosystems and metabolism. Although the photoprotective mechanisms functioning in the photosystem have been studied, it is unclear how metabolism responds to light fluctuations within a few seconds. In the present study, we investigated the metabolic response of Synechocystis sp. PCC 6803 to light fluctuations using C-metabolic flux analysis. The light intensity and duty ratio were adjusted such that the total number of photons or the light intensity during the low-light phase was equal. Light fluctuations affected cell growth and photosynthetic activity under the experimental conditions. However, metabolic flux distributions and cofactor production rates were not affected by the light fluctuations. Furthermore, the estimated ATP and NADPH production rates in the photosystems suggest that NADPH-consuming electron dissipation occurs under fluctuating light conditions. Although we focused on the water-water cycle as the electron dissipation path, no growth effect was observed in an flv3-disrupted strain under fluctuating light, suggesting that another path contributes to electron dissipation under these conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/btpr.3326DOI Listing

Publication Analysis

Top Keywords

light fluctuations
20
fluctuating light
12
electron dissipation
12
light
11
metabolic flux
8
synechocystis pcc
8
pcc 6803
8
light intensity
8
production rates
8
fluctuations photosynthesis
4

Similar Publications

Animals can improve their decision-making abilities by integrating information from multiple senses, which is especially beneficial when living in fluctuating environments. However, understanding how wild predators may use multimodal sensing when hunting prey in split-second interactions remains largely unexplored. As nocturnal hunters, bats rely on echolocation to navigate and to locate evasive prey, yet they have retained functional vision, despite the associated costs.

View Article and Find Full Text PDF

Photosynthetic organisms have evolved diverse strategies to adapt to fluctuating light conditions, balancing efficient light capture with photoprotection. In green algae and land plants, this involves specialized light-harvesting complexes (LHCs), non-photochemical quenching, and state transitions driven by dynamic remodeling of antenna proteins associated with Photosystems (PS) I and II. Euglena gracilis, a flagellate with a secondary green plastid, represents a distantly related lineage whose light-harvesting regulation remains poorly understood.

View Article and Find Full Text PDF

Background: Lung ischemia-reperfusion injury (LIRI) is a pathological condition characterized by aggravated oxidative-inflammatory tissue damage that occurs upon blood flow restoration after ischemia. LIRI can lead to severe complications, including primary graft dysfunction in lung transplants and multi-organ failure. However, current treatments remain limited.

View Article and Find Full Text PDF

Making Restoration Effective for Dynamic Coastal Wetlands.

Glob Chang Biol

September 2025

Elkhorn Slough National Estuarine Research Reserve, Watsonville, California, USA.

To halt and reverse the trends of ecosystem loss and degradation under global change, nations globally are promoting ecosystem restoration. Restoration is particularly crucial to coastal wetlands (including tidal marshes, mangrove forests, and tidal flats), which are among the most important ecosystems on Earth but have been severely depleted and degraded. In this review, we explore the question of how to make restoration more effective for coastal wetlands in light of the often-overlooked dynamic nature of these transitional ecosystems between land and ocean.

View Article and Find Full Text PDF

The challenge of efficiently detecting ripe and unripe strawberries in complex environments like greenhouses, marked by dense clusters of strawberries, frequent occlusions, overlaps, and fluctuating lighting conditions, presents significant hurdles for existing detection methodologies. These methods often suffer from low efficiency, high computational expenses, and subpar accuracy in scenarios involving small and densely packed targets. To overcome these limitations, this paper introduces YOLOv11-GSF, a real-time strawberry ripeness detection algorithm based on YOLOv11, which incorporates several innovative features: a Ghost Convolution (GhostConv) convolution method for generating rich feature maps through lightweight linear transformations, thereby reducing computational overhead and enhancing resource utilization; a C3K2-SG module that combines self-moving point convolution (SMPConv) and convolutional gated linear units (CGLU) to better capture the local features of strawberry ripeness; and a F-PIoUv2 loss function inspired by Focaler IoU and PIoUv2, utilizing adaptive penalty factors and interval mapping to expedite model convergence and optimize ripeness classification.

View Article and Find Full Text PDF