A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Measuring the performance of prediction models to personalize treatment choice. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

When data are available from individual patients receiving either a treatment or a control intervention in a randomized trial, various statistical and machine learning methods can be used to develop models for predicting future outcomes under the two conditions, and thus to predict treatment effect at the patient level. These predictions can subsequently guide personalized treatment choices. Although several methods for validating prediction models are available, little attention has been given to measuring the performance of predictions of personalized treatment effect. In this article, we propose a range of measures that can be used to this end. We start by defining two dimensions of model accuracy for treatment effects, for a single outcome: discrimination for benefit and calibration for benefit. We then amalgamate these two dimensions into an additional concept, decision accuracy, which quantifies the model's ability to identify patients for whom the benefit from treatment exceeds a given threshold. Subsequently, we propose a series of performance measures related to these dimensions and discuss estimating procedures, focusing on randomized data. Our methods are applicable for continuous or binary outcomes, for any type of prediction model, as long as it uses baseline covariates to predict outcomes under treatment and control. We illustrate all methods using two simulated datasets and a real dataset from a trial in depression. We implement all methods in the R package predieval. Results suggest that the proposed measures can be useful in evaluating and comparing the performance of competing models in predicting individualized treatment effect.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7615726PMC
http://dx.doi.org/10.1002/sim.9665DOI Listing

Publication Analysis

Top Keywords

treatment
9
measuring performance
8
prediction models
8
treatment control
8
models predicting
8
personalized treatment
8
methods
5
performance prediction
4
models
4
models personalize
4

Similar Publications