Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Ground-state Kohn-Sham density functional theory provides, in principle, the exact ground-state energy and electronic spin densities of real interacting electrons in a static external potential. In practice, the exact density functional for the exchange-correlation (xc) energy must be approximated in a computationally efficient way. About 20 mathematical properties of the exact xc functional are known. In this work, we review and discuss these known constraints on the xc energy and hole. By analyzing a sequence of increasingly sophisticated density functional approximations (DFAs), we argue that () the satisfaction of more exact constraints and appropriate norms makes a functional more predictive over the immense space of many-electron systems and () fitting to bonded systems yields an interpolative DFA that may not extrapolate well to systems unlike those in the fitting set. We discuss both how the class of well-described systems has grown along with constraint satisfaction and the possibilities for future functional development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1146/annurev-physchem-062422-013259 | DOI Listing |