Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Objective: Mitochondria fuel most animal cells with ATP, ensuring proper energetic metabolism of organs. Early and extensive mitochondrial dysfunction often leads to severe disorders through multiorgan failure. Hacd2 gene encodes an enzyme involved in very long chain fatty acid (C ≥ 18) synthesis, yet its roles in vivo remain poorly understood. Since mitochondria function relies on specific properties of their membranes conferred by a particular phospholipid composition, we investigated if Hacd2 gene participates to mitochondrial integrity.
Methods: We generated two mouse models, the first one leading to a partial knockdown of Hacd2 expression and the second one, to a complete knockout of Hacd2 expression. We performed an in-depth analysis of the associated phenotypes, from whole organism to molecular scale.
Results: Thanks to these models, we show that Hacd2 displays an early and broad expression, and that its deficiency in mice is lethal. Specifically, partial knockdown of Hacd2 expression leads to death within one to four weeks after birth, from a sudden growth arrest followed by cachexia and lethargy. The total knockout of Hacd2 is even more severe, characterized by embryonic lethality around E9.5 following developmental arrest and pronounced cardiovascular malformations. In-depth mechanistic analysis revealed that Hacd2 deficiency causes altered mitochondrial efficiency and ultrastructure, as well as accumulation of oxidized cardiolipin.
Conclusions: Altogether, these data indicate that the Hacd2 gene is essential for energetic metabolism during embryonic and postnatal development, acting through the control of proper mitochondrial organization and function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9986742 | PMC |
http://dx.doi.org/10.1016/j.molmet.2023.101677 | DOI Listing |