A simple fabricated thickness-based stiffness gradient for cell studies.

Sci Bull (Beijing)

Division of Life Science & Health, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China. Electronic address:

Published: February 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this work, we developed a simple method to fabricate a thickness-based continuous stiffness gradient for biological studies. It was made by glass slides, polydimethylsiloxane (PDMS) pre-polymer, spacer and clips only, without any sophisticated equipment. It is easy to fabricate in any general biological and pharmaceutical laboratories. The stiffness gradient was characterized in terms of apparent Young's modulus by atomic force microscopy (AFM) and the Young's modulus along the gradient was found to be 8.5-120kPa, which is within the physiological relevant range. HeLa-C3 cells were cultured on the gradient to study their morphological behavior according to the substrate stiffness. Furthermore, the drug efficiency of etoposide, an anti-cancer drug, was studied along the substrate stiffness gradient. It was found that HeLa-C3 cells cultured on the soft region of the gradient (8.5-11kPa) are more sensitive to etoposide. We believe the proposed device could promote cell investigations and drug screenings on a substrate with comparable stiffness to the native tissue.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scib.2016.12.012DOI Listing

Publication Analysis

Top Keywords

stiffness gradient
16
young's modulus
8
hela-c3 cells
8
cells cultured
8
substrate stiffness
8
gradient
7
stiffness
6
simple fabricated
4
fabricated thickness-based
4
thickness-based stiffness
4

Similar Publications

Traction-regulated persistence governs durotaxis across cell types.

Eur J Cell Biol

September 2025

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China. Electronic address:

Cell migration toward stiffer or softer environments (durotaxis) underlies processes from development to cancer metastasis, yet the underlying mechanism and its universality remain unclear. To resolve this, we investigated how traction forces and directional persistence dictate cell migration along stiffness gradients. We utilized tunable PEG hydrogels with stiffness gradients of 1-16 kPa and perturbed contractility (blebbistatin, oligomycin), and adhesion (vinculin mutants), in cancer cells exhibiting opposing durotactic biases.

View Article and Find Full Text PDF

Mechanotransduction plays a pivotal role in shaping cellular behavior including migration, differentiation, and proliferation. To investigate this mechanism more accurately further, this study came up with a novel elastomeric substrate with a stiffness gradient using a sugar-based replica molding technique combined with a two-layer PDMS system. The efficient water solubility of candy allows easy release, creating a smooth substrate.

View Article and Find Full Text PDF

Human and mouse incisors are both primarily composed of dentin and enamel, which meet at an interface called the dentin-enamel junction (DEJ). However, incisors in the two species have very different growth patterns, structures, and loading requirements. Since the DEJ is responsible for minimizing cracking at this at-risk interface between mechanically dissimilar dentin and enamel, its structure is expected to be significantly different between humans and mice.

View Article and Find Full Text PDF

Portal hypertension (PH) is a major complication of chronic liver disease, often leading to serious clinical consequences such as variceal bleeding, ascites, and splenomegaly. The current gold standard for PH diagnosis, namely, hepatic venous pressure gradient measurement, is invasive and not widely available. Transient elastography has emerged as a non-invasive alternative for assessing liver stiffness (LS), and recent studies have highlighted the potential role of splenic stiffness (SS) in evaluating PH severity.

View Article and Find Full Text PDF

Surficial sediments are highly susceptible to physical, biological, and chemical processes, which can create significant heterogeneity, affecting the transmission and scattering of elastic waves. Non-invasive medical shear wave elastography (SWE) can potentially resolve shear speed heterogeneity in this delicate surficial layer. Samples were extracted from two mudflats in New Hampshire, USA, where sound speed and attenuation were measured 1 cm below the water-sediment interface using the core and resonance logger (200 kHz-1 MHz).

View Article and Find Full Text PDF