98%
921
2 minutes
20
We aimed to assess the systemic and hepatic renin-angiotensin-system (RAS) fingerprint in advanced chronic liver disease (ACLD). This prospective study included 13 compensated (cACLD) and 12 decompensated ACLD (dACLD) patients undergoing hepatic venous pressure gradient (HVPG) measurement. Plasma components (all patients) and liver-local enzymes (n = 5) of the RAS were analyzed using liquid chromatography-tandem mass spectrometry. Patients with dACLD had significantly higher angiotensin (Ang) I, Ang II and aldosterone plasma levels. Ang 1-7, a major mediator of the alternative RAS, was almost exclusively detectable in dACLD (n = 12/13; vs. n = 1/13 in cACLD). Also, dACLD patients had higher Ang 1-5 (33.5 pmol/L versus cACLD: 6.6 pmol/L, p < 0.001) and numerically higher Ang III and Ang IV levels. Ang 1-7 correlated with HVPG (ρ = 0.655; p < 0.001), von Willebrand Factor (ρ = 0.681; p < 0.001), MELD (ρ = 0.593; p = 0.002) and interleukin-6 (ρ = 0.418; p = 0.047). Considerable activity of ACE, chymase, ACE2, and neprilysin was detectable in all liver biopsies, with highest chymase and ACE2 activity in cACLD patients. While liver-local classical and alternative RAS activity was already observed in cACLD, systemic activation of alternative RAS components occurred only in dACLD. Increased Ang 1-7 was linked to severe liver disease, portal hypertension, endothelial dysfunction and inflammation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9849268 | PMC |
http://dx.doi.org/10.1038/s41598-023-28239-2 | DOI Listing |
J Agric Food Chem
September 2025
Center of Drug Safety Evaluation, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
Creating effective treatments for type 2 diabetes mellitus (T2DM) remains a critical global health challenge. This study investigates the antidiabetic mechanisms of subsp. B-53 ( B-53) in T2DM mice.
View Article and Find Full Text PDFHepatology
September 2025
Department of Pathology, Department of Molecular Biology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA.
Background And Aims: So far, there is no effective mechanism-based therapeutic agent tailored for liver tumors. Immune checkpoint inhibitors (ICIs) have demonstrated limited efficacy in liver cancer, often associated with severe adverse effects. Although poly-inosinic:cytidylic acid (polyIC) has shown an adjuvant effect when combined with anti-PD-L1 antibody (αPD-L1) in treating liver tumors in animal models, its systemic toxicity limits its clinical utility.
View Article and Find Full Text PDFInt J Mol Med
November 2025
Department of Neurosciences 'Rita Levi Montalcini', University of Turin, I‑10125 Turin, Italy.
Kinases are activators of well‑known inflammatory cascades implicated in metabolic disorders, and abnormal activation of casein kinase II (CK2) is associated with several inflammatory disorders. However, thus far, its role in the low‑grade chronic inflammatory response known as 'metaflammation', which is a hallmark of obesity and type 2 diabetes, has not yet been elucidated. The present study aimed to evaluate the role of CK2 in diet‑induced metaflammation and the effects of the CK2 inhibitor 4,5,6,7‑tetrabromobenzotriazole (TBB) on a murine model fed a high‑fat‑high‑sugar (HFHS) diet.
View Article and Find Full Text PDFJ Histotechnol
September 2025
Department of Pathology, Peking University Third Hospital, Beijing, China.
Amyloidosis encompasses a spectrum of rare disorders characterized by extracellular amyloid deposition. Achieving an accurate early diagnosis of systemic amyloidosis necessitates biopsy-specific pathological evaluation. Formalin-fixed, paraffin-embedded liver biopsy specimens were examined using Congo red staining, electron microscopy, immunohistochemistry (IHC), immunofluorescence, and Congo red-assisted laser microdissection with mass spectrometry (LMD/MS).
View Article and Find Full Text PDFMater Today Bio
October 2025
Anhui Province Key Laboratory of Occupational Health, Anhui No. 2 Provincial People's Hospital, Hefei, 230041, PR China.
Organ transplantation faces critical challenges, including donor shortages, suboptimal preservation, ischemia-reperfusion injury (IRI), and immune rejection. Nanotechnology offers transformative solutions by leveraging precision-engineered materials to enhance graft viability and outcomes. This review highlights nanomaterials' roles in revolutionizing organ preservation.
View Article and Find Full Text PDF