Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In vitro transcribed (IVT-)mRNA has entered center stage for vaccine development due to its immune co-stimulating properties. Given the widely demonstrated safety of IVT-mRNA-based vaccines, we aimed to adopt IVT-mRNA encoding VEGF for secretory phenotype modulation of therapeutic cells. However, we observed that the immunogenicity of IVT-mRNA impairs the endogenous secretion of pro-angiogenic mediators from transfected mesenchymal stromal cells, instead inducing anti-angiogenic chemokines. This inflammatory secretome modulation limits the application potential of unmodified IVT-mRNA for cell therapy manufacturing, pro-angiogenic therapy and regenerative medicine. To uncouple immunogenicity from the protein expression functionality, we immuno-engineered IVT-mRNA with different chemically modified ribonucleotides. 5-Methoxy-uridine-modification of IVT-mRNA rescued the endogenous secretome pattern of transfected cells and prolonged secretion of IVT-mRNA-encoded VEGF. We found that high secretion of IVT-mRNA-encoded protein further depends on optimized cell adhesion. Cell encapsulation in a collagen-hyaluronic acid hydrogel increased secretion of IVT-mRNA-encoded VEGF and augmented the endogenous secretion of supporting pro-angiogenic mediators, such as HGF. Integrating minimally immunogenic mRNA technology with predesigned matrix-derived cues allows for the synergistic combination of multiple dimensions of cell manipulation and opens routes for biomaterial-based delivery of mRNA-engineered cell products. Such multimodal systems could present a more biologically relevant way to therapeutically address complex multifactorial processes such as tissue ischemia, angiogenesis, and regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2022.121971DOI Listing

Publication Analysis

Top Keywords

secretion ivt-mrna-encoded
12
endogenous secretion
8
pro-angiogenic mediators
8
ivt-mrna-encoded vegf
8
cell
6
ivt-mrna
6
secretion
5
immuno-engineered mrna
4
mrna combined
4
combined cell
4

Similar Publications

Immuno-engineered mRNA combined with cell adhesive niche for synergistic modulation of the MSC secretome.

Biomaterials

March 2023

Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513, Teltow, Germany; Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Augustenburger Platz 1, 13353, Berlin, Germany. Electronic address:

In vitro transcribed (IVT-)mRNA has entered center stage for vaccine development due to its immune co-stimulating properties. Given the widely demonstrated safety of IVT-mRNA-based vaccines, we aimed to adopt IVT-mRNA encoding VEGF for secretory phenotype modulation of therapeutic cells. However, we observed that the immunogenicity of IVT-mRNA impairs the endogenous secretion of pro-angiogenic mediators from transfected mesenchymal stromal cells, instead inducing anti-angiogenic chemokines.

View Article and Find Full Text PDF

In vitro transcribed (IVT) mRNA has recently come into focus as a potential new drug class to deliver genetic information. Such synthetic mRNA can be engineered to transiently express proteins by structurally resembling natural mRNA. Advances in addressing the inherent challenges of this drug class, particularly related to controlling the translational efficacy and immunogenicity of the IVTmRNA, provide the basis for a broad range of potential applications.

View Article and Find Full Text PDF