98%
921
2 minutes
20
G-protein-coupled receptors (GPCRs) are ubiquitous integral membrane proteins involved in diverse cellular signaling processes. Here, we carry out a large-scale ensemble thermodynamic study of 45 ligand-free GPCRs employing a structure-based statistical mechanical framework. We find that multiple partially structured states co-exist in the GPCR native ensemble, with the TM helices 1, 6 and 7 displaying varied folding status, and shaping the conformational landscape. Strongly coupled residues are anisotropically distributed, accounting for only 13% of the residues, illustrating that a large number of residues are inherently dynamic. Active-state GPCRs are characterized by reduced conformational heterogeneity with altered coupling-patterns distributed throughout the structural scaffold. In silico alanine-scanning mutagenesis reveals that extra- and intra-cellular faces of GPCRs are coupled thermodynamically, highlighting an exquisite structural specialization and the fluid nature of the intramolecular interaction network. The ensemble-based perturbation methodology presented here lays the foundation for understanding allosteric mechanisms and the effects of disease-causing mutations in GCPRs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9829892 | PMC |
http://dx.doi.org/10.1038/s41467-023-35790-z | DOI Listing |
Handb Exp Pharmacol
September 2025
Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
Research conducted over the last 15 years indicates that cAMP is generated not just from the plasma membrane but also from intracellular compartments, particularly in endosomes, where receptors are redistributed during the endocytosis process. This review centers on the parathyroid hormone type 1 receptor (PTHR) as a model for a peptide hormone GPCRs that generates cAMP from various locations with distinct duration and pharmacological effectiveness. We discuss how structural dynamics simulations aid in designing ligands that induce cAMP location bias, ultimately answering how the spatiotemporal generation of cAMP affects pharmacological responses mediated by the PTHR.
View Article and Find Full Text PDFHandb Exp Pharmacol
September 2025
National Institute of Biological Sciences, Beijing, China.
G protein-coupled receptors (GPCRs) engage multiple transducers to regulate distinct physiological processes. These transducers include various G proteins subtypes, GPCR kinases (GRKs), and β-arrestins. In addition to promoting receptor desensitization, β-arrestins serve as scaffolds for signaling via non-G protein pathways.
View Article and Find Full Text PDFHandb Exp Pharmacol
September 2025
Department of Medicine, Duke University Medical Center, Durham, NC, USA.
GPCRs are known for their versatile signaling roles at the plasma membrane; however, recent studies have revealed that these receptors also function within various intracellular compartments, such as endosomes, the Golgi apparatus, and the endoplasmic reticulum. This spatially distinct signaling, termed location bias, allows GPCRs to initiate unique signaling cascades and influence cellular processes-including cAMP production, calcium mobilization, and protein phosphorylation-in a compartment-specific manner. By mapping the impact of GPCR signaling from these subcellular locations, this chapter emphasizes the mechanisms underlying signaling from intracellular receptor pools in diversifying receptor functionality.
View Article and Find Full Text PDFHandb Exp Pharmacol
September 2025
Tsinghua University, Beijing, China.
The μ-opioid receptor (μOR) is the primary drug target of opioid analgesics such as morphine and fentanyl. Activation of μORs in the central nervous system inhibits ascending pain signaling to the cortex, thereby producing analgesic effects. However, the clinical use of opioid analgesics is severely limited by adverse side effects, including respiratory depression, constipation, addiction, and the development of tolerance.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India.
Agonist-induced interaction of G protein-coupled receptors (GPCRs) with β-arrestins (βarrs) is a critical mechanism that regulates the spatiotemporal pattern of receptor localization and signaling. While the underlying mechanism governing GPCR-βarr interaction is primarily conserved and involves receptor activation and phosphorylation, there are several examples of receptor-specific fine-tuning of βarr-mediated functional outcomes. Considering the key contribution of conformational plasticity of βarrs in driving receptor-specific functional responses, it is important to develop novel sensors capable of reporting distinct βarr conformations in cellular context.
View Article and Find Full Text PDF