Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hepatocellular carcinoma (HCC) pathogenesis is associated with alterations in splicing machinery components (spliceosome and splicing factors) and aberrant expression of oncogenic splice variants. We aimed to analyze the expression and potential role of the spliceosome component PRPF8 (pre-mRNA processing factor 8) in HCC. PRPF8 expression (mRNA/protein) was analyzed in a retrospective cohort of HCC patients (n = 172 HCC and nontumor tissues) and validated in two in silico cohorts (TCGA and CPTAC). PRPF8 expression was silenced in liver cancer cell lines and in xenograft tumors to understand the functional and mechanistic consequences. In silico RNAseq and CLIPseq data were also analyzed. Our results indicate that PRPF8 is overexpressed in HCC and associated with increased tumor aggressiveness (patient survival, etc.), expression of HCC-related splice variants, and modulation of critical genes implicated in cancer-related pathways. PRPF8 silencing ameliorated aggressiveness in vitro and decreased tumor growth in vivo. Analysis of in silico CLIPseq data in HepG2 cells demonstrated that PRPF8 binds preferentially to exons of protein-coding genes, and RNAseq analysis showed that PRPF8 silencing alters splicing events in multiple genes. Integrated and in vitro analyses revealed that PRPF8 silencing modulates fibronectin (FN1) splicing, promoting the exclusion of exon 40.2, which is paramount for binding to integrins. Consistent with this finding, PRPF8 silencing reduced FAK/AKT phosphorylation and blunted stress fiber formation. Indeed, HepG2 and Hep3B cells exhibited a lower invasive capacity in membranes treated with conditioned medium from PRPF8-silenced cells compared to medium from scramble-treated cells. This study demonstrates that PRPF8 is overexpressed and associated with aggressiveness in HCC and plays important roles in hepatocarcinogenesis by altering FN1 splicing, FAK/AKT activation and stress fiber formation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9898568PMC
http://dx.doi.org/10.1038/s12276-022-00917-7DOI Listing

Publication Analysis

Top Keywords

prpf8 silencing
16
prpf8
11
hepatocellular carcinoma
8
splice variants
8
prpf8 expression
8
clipseq data
8
prpf8 overexpressed
8
fn1 splicing
8
stress fiber
8
fiber formation
8

Similar Publications

PRPF8 controls alternative splicing of PIRH2 to modulate the p53 pathway and survival of human ESCs.

J Cell Physiol

August 2023

CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.

Human embryonic stem cells (hESCs) have great potential for developmental biology and regenerative medicine. However, extensive apoptosis often occurs when hESCs respond to various stresses or injuries. Understanding the molecular control and identifying new factors associated with hESC survival are fundamental to ensure the high quality of hESCs.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) pathogenesis is associated with alterations in splicing machinery components (spliceosome and splicing factors) and aberrant expression of oncogenic splice variants. We aimed to analyze the expression and potential role of the spliceosome component PRPF8 (pre-mRNA processing factor 8) in HCC. PRPF8 expression (mRNA/protein) was analyzed in a retrospective cohort of HCC patients (n = 172 HCC and nontumor tissues) and validated in two in silico cohorts (TCGA and CPTAC).

View Article and Find Full Text PDF

U5 snRNP Core Proteins Are Key Components of the Defense Response against Viral Infection through Their Roles in Programmed Cell Death and Interferon Induction.

Viruses

December 2022

Département de Biochimie et de Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada.

The spliceosome is a massive ribonucleoprotein structure composed of five small nuclear ribonucleoprotein (snRNP) complexes that catalyze the removal of introns from pre-mature RNA during constitutive and alternative splicing. EFTUD2, PRPF8, and SNRNP200 are core components of the U5 snRNP, which is crucial for spliceosome function as it coordinates and performs the last steps of the splicing reaction. Several studies have demonstrated U5 snRNP proteins as targeted during viral infection, with a limited understanding of their involvement in virus-host interactions.

View Article and Find Full Text PDF

The role of splicing factor PRPF8 in breast cancer.

Technol Health Care

March 2022

Institute of Cancer Prevention and Treatment, Heilongjiang Province Academy of Medical Sciences, Harbin, Heilongjiang, China.

Background: Alternative splicing is a mechanism to produce different proteins with diverse functions from one gene. Many splicing factors play an important role in cancer progression. PRPF8 is a core protein component of the spliceosome complex, U4/U6-U5 tri-snRNP.

View Article and Find Full Text PDF