Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The dystrophin-glycoprotein complex (DGC) is a critical adhesion complex of the muscle cell membrane, providing a mechanical link between the extracellular matrix (ECM) and the cortical cytoskeleton that stabilizes the sarcolemma during repeated muscle contractions. One integral component of the DGC is the transmembrane protein, sarcospan (SSPN). Overexpression of SSPN in the skeletal muscle of mdx mice (murine model of DMD) restores muscle fiber attachment to the ECM in part through an associated increase in utrophin and integrin adhesion complexes at the cell membrane, protecting the muscle from contraction-induced injury. In this study, we utilized transcriptomic and ECM protein-optimized proteomics data sets from wild-type, mdx, and mdx transgenic (mdx) skeletal muscle tissues to identify pathways and proteins driving the compensatory action of SSPN overexpression.

Methods: The tibialis anterior and quadriceps muscles were isolated from wild-type, mdx, and mdx mice and subjected to bulk RNA-Seq and global proteomics analysis using methods to enhance capture of ECM proteins. Data sets were further analyzed through the ingenuity pathway analysis (QIAGEN) and integrative gene set enrichment to identify candidate networks, signaling pathways, and upstream regulators.

Results: Through our multi-omics approach, we identified 3 classes of differentially expressed genes and proteins in mdx muscle, including those that were (1) unrestored (significantly different from wild type, but not from mdx), (2) restored (significantly different from mdx, but not from wild type), and (3) compensatory (significantly different from both wild type and mdx). We identified signaling pathways that may contribute to the rescue phenotype, most notably cytoskeleton and ECM organization pathways. ECM-optimized proteomics revealed an increased abundance of collagens II, V, and XI, along with β-spectrin in mdx samples. Using ingenuity pathway analysis, we identified upstream regulators that are computationally predicted to drive compensatory changes, revealing a possible mechanism of SSPN rescue through a rewiring of cell-ECM bidirectional communication. We found that SSPN overexpression results in upregulation of key signaling molecules associated with regulation of cytoskeleton organization and mechanotransduction, including Yap1, Sox9, Rho, RAC, and Wnt.

Conclusions: Our findings indicate that SSPN overexpression rescues dystrophin deficiency partially through mechanotransduction signaling cascades mediated through components of the ECM and the cortical cytoskeleton.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9817407PMC
http://dx.doi.org/10.1186/s13395-022-00311-xDOI Listing

Publication Analysis

Top Keywords

mdx
12
skeletal muscle
12
sspn overexpression
12
wild type
12
mdx skeletal
8
muscle
8
cell membrane
8
ecm cortical
8
cortical cytoskeleton
8
mdx mice
8

Similar Publications

Patients with Duchenne muscular dystrophy (DMD) may experience neurobehavioral and cognitive concerns, including psychiatric symptoms, due to the absence of full-length dystrophin (Dp427), frequently accompanied by deficiencies in shorter isoforms. The lack of dystrophin affects neurophysiological processes from the uterine phase, impacting neural circuitry in brain regions such as the prefrontal cortex, hippocampus, and cerebellum. This leads to reduced inhibitory GABAergic transmission and altered hippocampal glutamatergic signaling.

View Article and Find Full Text PDF

A combinatorial oligonucleotide therapy to improve dystrophin restoration and dystrophin-deficient muscle health.

Mol Ther Nucleic Acids

September 2025

Center for Genetic Medicine Research, Children's National Research Institute, Children's National Research and Innovation Campus, Children's National Hospital, Washington, DC 20012, USA.

Despite the proven safety of dystrophin-targeting phosphorodiamidate morpholino oligomer (PMO) therapy, poor delivery of the PMOs limit the efficacy of this dystrophin restoring gene therapy for Duchenne muscular dystrophy (DMD). Limited myogenesis and excessive fibrosis in DMD are pathological features that contribute to the poor efficacy of PMOs. We show that the severe DMD mouse model (D2-) not only replicates these pathological features of DMD but also mirrors the resulting PMO-mediated dystrophin restoration deficit.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a lethal pediatric striated muscle disease caused by loss of dystrophin for which there is no cure. Cardiomyopathy is the leading cause of death amongst individuals with DMD, and effective therapeutics to treat DMD cardiomyopathy are a major unmet clinical need. This work investigated adeno-associated viral (AAV) gene therapy approaches to treat DMD cardiomyopathy by overexpression of the calcium binding proteins S100A1 and apoptosis repressor with caspase recruitment domains (ARC).

View Article and Find Full Text PDF

Duchenne Muscular Dystrophy (DMD) is a progressive muscular degenerative disease that is recessively inherited through the X chromosome. Various mutations in the dystrophin gene lead to noticeable muscle weakness. The effects on skeletal and cardiac tissue result in progressive immobility and cardiac dysfunction, respectively.

View Article and Find Full Text PDF

Monocytes/macrophages promote the repair of acutely injured muscle while contributing to dystrophic changes in chronically injured muscle in Duchenne muscular dystrophy (DMD) patients and animal models including and mice. To elucidate the molecular mechanisms underlying this functional difference, we compared the transcriptomes of intramuscular monocytes/macrophages from () uninjured muscles, acutely injured muscles, and dystrophic muscles, using single cell-based RNA sequencing (scRNA-seq) analysis. Our study identified multiple transcriptomically diverse monocyte/macrophage subclusters, which appear to be induced by the intramuscular microenvironment.

View Article and Find Full Text PDF