A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Trade-offs across values in cesspool management highlight challenges to policy making. | LitMetric

Trade-offs across values in cesspool management highlight challenges to policy making.

J Environ Manage

Water Resources Research Center, University of Hawai'i at Mānoa, 2540 Dole Street, Holmes Hall 283, Honolulu, HI, 96822, USA; Department of Civil and Environmental Engineering, University of Hawai'i at Mānoa, 2540 Dole Street, Holmes Hall 240, Honolulu, HI, 96822, USA. Electronic address: roger.ba

Published: March 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

On-site Sewage Disposal Systems (OSDS) are globally common, and in Hawai'i they present a risk of contamination to drinking water sources and nearshore waters. State legislation has commanded that all cesspools are to be banned by 2050, thus requiring tens of thousands of systems to be converted in the coming decades. This project followed a participatory structured decision-making (SDM) approach to collaboratively design cost-effective and equitable solutions for thousands of cesspools in the high elevation areas of north Maui, Hawai'i. Participatory workshops with a diverse group of stakeholders set ten objectives and brainstormed 33 alternatives, for which the technical team then modeled groundwater nutrients, costs, and equity. All alternatives posed trade-offs, though composting toilets performed best across most objectives, albeit with high maintenance burden. Discounting innovative toilets, the multi-objective analysis suggests that the state should invest in cluster sewering of high-density communities, followed by incentivizing septic tank solutions in properties with the highest effluent flow first, then expanding across the area. The total project cost (installation and operation/maintenance) would be $183-258 million, depending upon the sewer-septic combination. An efficiency frontier reveals sub-par combinations, including aerobic treatment units and passive absorption systems, which cost much more and deliver lower mass flux reduction than more cost-effective alternatives. This study contributes a novel case of rural sanitation to the literature in which decision support tools are used to facilitate evidence-based, collaborative decision-making for sanitation planning. The state could use a similar participatory SDM process when approaching other communities to discuss their cesspool upgrade strategies. Broadening the use of decision analytic techniques can have wider ecological, economic, and social benefits for the state and contexts beyond Hawai'i, as SDM provides a transparent and rigorous, evidence-based decision-theoretic framework to explore multiple values and strategies to address difficult resource management problems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2022.116853DOI Listing

Publication Analysis

Top Keywords

trade-offs values
4
values cesspool
4
cesspool management
4
management highlight
4
highlight challenges
4
challenges policy
4
policy making
4
making on-site
4
on-site sewage
4
sewage disposal
4

Similar Publications