Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Novel monometallic (μ-LL')Ru, Ru(μ-LL'), homobimetallic Ru(μ-LL')Ru, and heterodimetallic Ru(μ-LL')Os and Os(μ-LL')Ru complexes based on two asymmetrical ligands LL' (where LL' = LL, LL) have been synthesized and characterized. Spectroscopic analysis indicates that all complexes exhibit intense spin-allowed ligand-centered (LC) transitions at 288 nm and Ru-based moderate spin-allowed MLCT absorption between 440-450 nm. The Ru(μ-LL')Os and Os(μ-LL')Ru dinuclear complexes show Os-based unit absorption in the range of 565-583 nm. The Ru-based units of the complexes present different emission intensities due to differing steric hindrance at the coordination sites of the two bridging ligands. The Os(μ-LL')Ru dinuclear complexes present weaker emission intensity than their parent monometallic complexes (μ-LL')Ru. These results indicate that the emission of Os(μ-LL')Ru dinuclear complexes is quenched by the Os(II)-based units.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2dt03709b | DOI Listing |