Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Pd(II) biladienes have been developed over the last five years as oligotetrapyrrole complexes that support a rich triplet photochemistry. In this work, we have undertaken the first detailed photophysical interrogation of three homologous Pd(II) biladienes bearing different combinations of methyl- and phenyl-substituents on the frameworks' sp-hybridized -carbon (, the 10-position of the biladiene framework). These experiments have revealed unexpected excited-state dynamics that are dependent on the wavelength of light used to excite the biladiene. More specifically, transient absorption spectroscopy revealed that higher-energy excitation ( ∼ 350-500 nm) led to an additional lifetime (, an extra photophysical process) compared to experiments carried out following excitation into the lowest-energy excited states ( = 550 nm). Each Pd(II) biladiene complex displayed an intersystem crossing lifetime on the order of tens of ps and a triplet lifetime of ∼20 μs, regardless of the excitation wavelength. However, when higher-energy light is used to excite the complexes, a new lifetime on the order of hundreds of ps is observed. The origin of the 'extra' lifetime observed upon higher energy excitation was revealed using density functional theory (DFT) and time-dependent DFT (TDDFT). These efforts demonstrated that excitation into higher-energy metal-mixed-charge-transfer excited states with high spin-orbit coupling to higher energy metal-mixed-charge-transfer triplet states leads to the additional excitation deactivation pathway. The results of this work demonstrate that Pd(II) biladienes support a unique triplet photochemistry that may be exploited for development of new photochemical schemes and applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2cp04572a | DOI Listing |