A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Lpp of Escherichia coli K1 inhibits host ROS production to counteract neutrophil-mediated elimination. | LitMetric

Lpp of Escherichia coli K1 inhibits host ROS production to counteract neutrophil-mediated elimination.

Redox Biol

Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, China. Electronic address:

Published: February 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Escherichia coli (E. coli) is the most common Gram-negative bacterial organism causing neonatal meningitis. The pathogenesis of E. coli meningitis, especially how E. coli escape the host immune defenses, remains to be clarified. Here we show that deletion of bacterial Lpp encoding lipoprotein significantly reduces the pathogenicity of E. coli K1 to induce high-degree of bacteremia necessary for meningitis. The Lpp-deleted E. coli K1 is found to be susceptible to the intracellular bactericidal activity of neutrophils, without affecting the release of neutrophil extracellular traps. The production of reactive oxygen species (ROS), representing the primary antimicrobial mechanism in neutrophils, is significantly increased in response to Lpp-deleted E. coli. We find this enhanced ROS response is associated with the membrane translocation of NADPH oxidase p47 and p67 in neutrophils. Then we constructed p47 knockout mice and we found the incidence of bacteremia and meningitis in neonatal mice induced by Lpp-deleted E. coli is significantly recovered by p47 knockout. Proteomic profile analysis show that Lpp deficiency induces upregulation of flagellar protein FliC in E. coli. We further demonstrate that FliC is required for the ROS induction in neutrophils by Lpp-deleted E. coli. Taken together, these data uncover the novel role of Lpp in facilitating intracellular survival of E. coli K1 within neutrophils. It can be inferred that Lpp of E. coli K1 is able to suppress FliC expression to restrain the activation of NADPH oxidase in neutrophils resulting in diminished bactericidal activity, thus protecting E. coli K1 from the elimination by neutrophils.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9823224PMC
http://dx.doi.org/10.1016/j.redox.2022.102588DOI Listing

Publication Analysis

Top Keywords

lpp-deleted coli
16
coli
14
escherichia coli
8
bacteremia meningitis
8
bactericidal activity
8
nadph oxidase
8
p47 knockout
8
neutrophils
7
lpp
5
lpp escherichia
4

Similar Publications