A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Fine-Tuning the Performance of Ultraflexible Organic Complementary Circuits on a Single Substrate via a Nanoscale Interfacial Photochemical Reaction. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Flexible electronics has paved the way toward the development of next-generation wearable and implantable healthcare devices, including multimodal sensors. Integrating flexible circuits with transducers on a single substrate is desirable for processing vital signals. However, the trade-off between low power consumption and high operating speed is a major bottleneck. Organic thin-film transistors (OTFTs) are suitable for developing flexible circuits owing to their intrinsic flexibility and compatibility with the printing process. We used a photoreactive insulating polymer poly((±)endo,exo-bicyclo[2.2.1]hept-ene-2,3-dicarboxylic acid, diphenylester) (PNDPE) to modulate the power consumption and operating speed of ultraflexible organic circuits fabricated on a single substrate. The turn-on voltage ( ) of the p- and n-type OTFTs was controlled through a nanoscale interfacial photochemical reaction. The time-of-flight secondary ion mass spectrometry revealed the preferential occurrence of the PNDPE photochemical reaction in the vicinity of the semiconductor-dielectric interface. The power consumption and operating speed of the ultraflexible complementary inverters were tuned by a factor of 6 and 4, respectively. The minimum static power consumption was 30 ± 9 pW at transient and 4 ± 1 pW at standby. Furthermore, within the tuning range of the operating speed and at a supply voltage above 2.5 V, the minimum stage delay time was of the order of hundreds of microseconds. We demonstrated electromyogram measurements to emphasize the advantage of the nanoscale interfacial photochemical reaction. Our study suggests that a nanoscale interfacial photochemical reaction can be employed to develop imperceptible and wearable multimodal sensors with organic signal processing circuits that exhibit low power consumption.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9798987PMC
http://dx.doi.org/10.1021/acsaelm.2c01444DOI Listing

Publication Analysis

Top Keywords

photochemical reaction
20
power consumption
20
nanoscale interfacial
16
interfacial photochemical
16
operating speed
16
single substrate
12
ultraflexible organic
8
multimodal sensors
8
flexible circuits
8
low power
8

Similar Publications